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(Summary) 

To achieve effective care, it is critical to match patients with capable physicians in 

specialty care. Motivated by the rising popularity of patient-and-physician matching 

applications in specialty care, this study optimizes the matching and appointment 

scheduling problems simultaneously in a stochastic environment, in which a 

decision-maker determines the patient-and-physician pair assignment and the starting 

times of services. We develop a stochastic optimization model to minimize the matching 
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and operational costs (i.e., patients’ waiting time costs, service providers’ idle time and 

overtime costs). This paper is the first study that incorporates matching and 

appointment scheduling problems together. The benefits of combining these two 

problems are enormous. The experimental results show that the operational costs gap is 

as large as 51% between the ill-matched and the well-matched patient-and-physician 

scenarios. We first reformulate this problem as a two-stage optimization problem. With 

the analysis for the optimal solution of the second stage problem, a Benders 

decomposition algorithm is developed. To improve the efficiency of the proposed 

algorithm, we also prove a low bound of our problem and use it to construct a set of 

feasibility cuts. Then, we extend our method to incorporate no-shows. Our algorithm 

can solve problems efficiently, and it can obtain optimal solutions for medium-size 

problems within 2 or 3 minutes. In contrast, traditional optimal methods require nearly 

2 hours. For large-size problems, our algorithm can obtain optimal solutions within 5 or 

6 minutes, whereas traditional optimal methods cannot generate a result within 5 

hours. Finally, numerical experiments are conducted to evaluate the performance of our 

proposed algorithm and to investigate the variation of the optimal solutions in different 

scenarios. To provide quality care as well as minimize the total cost of appointment 

scheduling in specialty care, we suggest that physicians should develop or train their 

specialties based on the local patients’ disease pattern. We also disclose that the 

no-show has less influence on the service system when the weight of the matching cost 

is substantial. 
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1. Introduction33

Specialty care clinics, in which specialists have extensive training and education, are designed34

to provide specific diagnoses and treatments. As modern medical development, specialties are dis-35

tinguished even in the same clinics. For example, in otorhinolaryngology, specialty care physicians36

(SCPs) diagnose and treat a wide range of diseases around the ear, nose, and throat regions. If a37

patient chooses a physician who is not in the right expertise, effective care may not be achieved. In38

practice, patients select SCPs either through referrals from their primary care physicians (PCPs)39

or by themselves. In a specialty care system with referrals, e.g., the United States, referrals by40

PCPs are frequently failed and often led to medical errors [1, 2]. It can be worse without the help41

of referrals. Especially for patients, because they have limited medical education and knowledge,42

but have to choose SCPs by themselves. On the other side, SCPs would prefer to see more patients43

that fall into their areas of clinical expertise, such that their medical training and education can be44

realized. Therefore, it is very critical to match patients with capable physicians in specialty care,45

such that the quality of care can be guaranteed to some extent.46

47

With the rapid development of information technology in healthcare, some applications have48

been invented to solve this patient and physician matching problem in specialty care recently.49

For example, in the United States, Specialty Care Connect (https://armadahealth.com/patient-50

physician-matching) powered by Armada Health had applied analytic models to connect patients51

to the right SCPs. In China, an intelligent matching system, named “Rui Zhi”, has been invented52

by Tencent, which is one of the biggest internet-based technology corporations in China. It has been53

implemented in Guangzhou women and children’s medical center since May 2018. The accuracy of54

diagnoses was claimed to be 94%, and the matching accuracy was reported to be 96%. Recently, a55

patient-and-physician matching index is proposed to measure the capability between patients and56

SCPs through an improved multi-disease pre-diagnosing Bayesian network model, which is based57

on given patient’s symptoms and physician’s specialties [3]. The experimental results show that the58

proposed patient-and-physician matching index increases the physician matching accuracy under59

various settings. Integrated with data science technologies and medical knowledge, these matching60

applications and mechanisms are designed to ensure the effectiveness of specialty care.61

62

Apart from the effectiveness, timely, and accessible coordination in specialty care is also very63

critical. In order to improve the efficiency of specialty care operations, appointment scheduling is64

an essential and efficient way to maximize physicians’ time utilities and improve patients’ satis-65

faction by reducing waiting time. Appointment scheduling has been well studied in primary care.66

In specialty care, when we make a schedule, we should take the unique characteristic of specialty67

into consideration, i.e., the matching between patients and physicians, so as to make a more rea-68

sonable schedule. To the best of our knowledge, there is no appointment scheduling literature that69

considers the effectiveness through the patient and physician matching. To ensure the effectiveness70

and efficiency of specialty care, the matching mechanism should be embedded in the appointment71

scheduling system, such that timely access and efficiency can be achieved at the same time.72

73

In an appointment scheduling problem in specialty, there are usually multiple physicians (with74

appointment scheduling terminology, physicians often refer to service providers) provide services.75

Thus, our studied appointment scheduling problem in specialty care is a multiple-provider appoint-76

ment scheduling problem indeed. Due to the vast majority of work on matching between patients77
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and physician preferences, in this work, we regard the matching cost between patients and physi-78

cians as the inputs to the appointment scheduling model.79

To sum up, in this study, we integrate the matching cost between patients and physicians into80

appointment scheduling problem for the specialty care, in which the service times are stochas-81

tic. Our objective is to jointly optimize the assignment and job allowance for each patient, such82

that the weighted operational and matching costs are minimized. We first formulate our studied83

problem as a two-stage optimization problem based on the sample average approximation (SAA)84

approach. After analyzing the properties for the optimal solution of the second stage problem, an85

improved Benders decomposition algorithm is proposed. Finally, we conduct computational experi-86

ments to identify the efficiency of our proposed algorithm and investigate some managerial insights.87

88

The contributions of this paper are summarized as follows. First, we adapt the patient-and-89

physician matching cost into the appointment scheduling problem. To the best of our knowledge,90

we are the first to jointly consider the matching problem and the appointment scheduling problem91

with multiple service providers in a stochastic environment. The experimental results in Section 592

give the managerial benefits of combining these two problems. The operational costs gap is as large93

as 51% between the ill-matched and the well-matched patients and physicians scenarios. Second,94

a two-stage stochastic program is formulated to minimize the weighted operational and matching95

costs. We analyze a low bound for the optimal objective value under any potential assignment.96

Third, we analyze the properties for the optimal solution of the second stage problem. On this97

basis, we propose an improved Benders decomposition algorithm with feasibility cuts to solve this98

problem efficiently. The experimental results of Section 5 show that our algorithm can obtain op-99

timal solutions for medium-size problems within 2 or 3 minutes. In contrast, traditional optimal100

methods require nearly 2 hours. For large-size problems, our algorithm can obtain optimal solu-101

tions within 5 or 6 minutes, whereas traditional optimal methods cannot generate a result within 5102

hours. Finally, several sensitivity analyses are conducted under different parameter settings. Our103

numerical results indicate the importance of the patient-and-physician matching. To provide qual-104

ity care as well as minimize the total cost of appointment scheduling in specialty care, we suggest105

that physicians should develop or train their specialties based on the local patients’ disease pattern.106

107

The overview of this paper is organized as follows. The literature related to patient-and-108

physician matching and appointment scheduling is reviewed in Section 2. We formally describe109

our studied problem in Section 3. The details of our proposed improved Benders decomposition110

approach are stated in Section 4. We extend our method to incorporate no-shows in Section 5.111

In Section 6, we conduct some numerical experiments to verify our proposed method and examine112

some potential insights. Some managerial implications are summarized in Section 7, followed by113

the summary and future work in Section 8.114

2. Literature Review115

In this section, we review the literature that is most relevant to our research. In particular, we116

focus mainly on patient-and-physician matching problems and fundamental appointment scheduling117

problems.118

2.1. Patient-and-physician matching119

The patient-and-physician matching problems of specialty care are different from primary care120

and elective surgery. In primary care, access to services is the most critical factor for patient-and-121
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physician matching [4]. Several studies also provide evidence that physicians’ interpersonal skills122

affect patients’ satisfaction [5] and treatment outcomes [6]. Gong et al. [7] propose a weighted aver-123

age model to recommend physicians by considering the economic matching degree, medical domain124

matching degree, recommender influence, and region reference. A time-constraint probability factor125

graph model learns these features from a real-world medical data set, which was optimized by a126

constraint-based optimization framework. Liu et al [8] examine the patients’ preferences and choice127

behavior in the scheduling appointment, which include the gender effect, speed, and physician of128

choice. Although the physician of choice is highly correlated to the quality of care, the detail of the129

physician of choice is not disclosed.130

131

With the development of modern medical science, physicians tend to have distinguished spe-132

cialties, although they are in the same department. The medical skills or specialties of physicians133

become more critical in patient-and-physician matching. Kinchen et al. [9] analyze the significant134

factors affecting the choice of specialists by primary care physicians through a survey. Medical135

skills, appointment timeliness, and quality of specialist communication are the three most impor-136

tant factors. Most existing literature studies the variations and their causes in referral decision137

making among PCPs. However, few explore the appropriateness of the referral decision, which is138

mainly defined by the medical skill [2].139

140

Pan et al. [10] propose a dynamic preference learning algorithm to recommend physicians in141

specialty care by considering both patients’ preferences and their heterogeneous illness conditions.142

Furthermore, it is assumed that general practitioners correctly evaluated patients’ illness conditions,143

and there was no bias to refer physicians in specialty care. However, general practitioners may lack144

related expertise and have some biased information about SCP. To eliminate biases or mistakes of145

referrals in specialty care, a pre-diagnosing model is applied to gain a more accurate diagnosis of146

patients’ disease(s). Given the specialty information of a physician, a patient-and-physician match-147

ing index is proposed to measure the quality influence during the matching [3].148

149

However, the matching literature mentioned above only considers the isolated matching between150

patients and physicians but ignores the operational aspects (i.e., timely and accessible) during151

the specialty care visit. Thus, we need to further integrate the matching with the appointment152

scheduling problem.153

2.2. Appointment Scheduling154

In the literature, one classic appointment scheduling problem refers to the intra-day scheduling155

problem, which focuses on making appointment decisions on a given day. For this kind of appoint-156

ment scheduling problem, usually, it is assumed that only one service provider provides service. The157

decision-maker needs to determine the start time of each appointment so as to balance the costs158

for both patients and service providers. Specifically, most works, including ours, study the objec-159

tive of minimizing the total expected (weighted) costs of patients’ waiting times, service provider’s160

idle times, and overtime [11, 12]. If there is no session length constraint, some studies only take161

patients’ waiting times and service providers’ idle times into consideration in the objective function162

[13, 14, 15, 16]. While other studies, including ours, consider total expected (weighted) costs of pa-163

tients’ waiting times and service provider’s overtime in the objective function [17, 18, 19]. Consider164

patients’ behavior, some work also take patients’ no-shows into consideration [17, 20, 21, 22]. Our165
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work also consider this important patients’ behavior.166

167

The classic appointment scheduling problems with a single service provider are often considered168

in a stochastic environment, such as random service times [11, 23] and random no-shows [21, 22]. In169

order to handle those uncertainties, most works focus on developing some stochastic optimization170

models [11, 24, 25, 21, 22]. On this basis, the developed stochastic models are often approximated171

as corresponding (mixed-integer) linear programs through Sample Average Approximation (SAA)172

approach [26, 27, 28]. For those (mixed-integer) linear programs, when the sample size is small173

(e.g., ≤ 500), they often can be solved directly [27, 28]. Nevertheless, when the sample size is large,174

it is difficult to achieve a high accuracy level solution within a reasonable computational time. In175

this case, some efficient algorithms are developed, such as the Benders decomposition algorithm176

[29, 30, 26], and simulation-based sequential algorithms [31]. In this work, we first formulate our177

studied problem as a stochastic program. And then, we also exploit the SAA approach to handle178

the stochastic service times. On this basis, we develop an improved Benders decomposition algo-179

rithm to solve the problem.180

181

However, the vast majority of the literature focuses on service systems that only involve one182

service process with one service provider [11, 24, 25, 17, 23]. In addition to systems with only one183

service provider, systems with many service providers also prevail in practice. However, studies184

on appointment scheduling problems with multiple service providers are limited. To the best of185

our knowledge, the only appointment scheduling works with multiple service provider systems are186

those by [32, 33, 34, 35, 36]. Sickinger et al. [34] consider two CT-scan machines in a radiology187

department, in which two machines are regarded as two identical parallel providers with identical188

deterministic service times. Similarly, Zacharias et al. [36] also assume the service providers are189

identical, and the service time is also identical deterministic. In contrast, Alvarez et al. [32] con-190

sider stochastic service times in a two-stage service system in which two identical parallel service191

providers in the first stage. Their purpose is to minimize the total weighted costs of patients’ wait-192

ing and service providers’ idling. Zheng et al. [33] consider no-shows in their model; however, their193

model cannot be easily adapted to the overtime case. Soltani et al. [35] also consider stochastic194

service times, and patients no-shows for an appointment scheduling problem with multiple service195

providers. Different from Zheng et al [33], they consider both patients’ waiting time, and service196

providers’ idle time and overtime in the objective function.197

198

However, all existing appointment scheduling problems do not consider the quality-related199

matching factors between patients and physicians. As we mentioned in the introduction section, the200

patient-and-physician matching is critical to improving the effectiveness in specialty care. Therefore,201

we integrate the multiple-provider appointment scheduling problem with the patient-and-physician202

matching problem in this paper.203

3. Problem Formulation204

In this paper, we consider generic specialty care with k service providers (in the rest of this205

206 paper, we use the terminology “service provider” to represent the specialty care physician). There 
207 are totally n patients needed to be scheduled within a session length T . Before making a schedule, 
208 the decision-maker has the following information: (1) The matching costs (mi, j, i = 1, 2, · · · , n, j = 
209 1, 2, · · · , k), which denote the cost for patient i match physician j, are assumed to be known in
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advance. In this work, we take the matching cost as input and it can be derived from the patient-210

211 and-physician matching index proposed by [3]. Li et al. [3] measure the matching indexes between 
212 patients and physicians based on the symptom-specialty relationship through a trained Bayesian 
213 network pre-diagnosing model. We transform the matching indexes into matching costs. Generally 
214 speaking, a higher matching index indicates a better-matched patient and physician. If a patient is 
215 assigned to a capable physician with a high matching index, it most likely leads to a better 
health-216 care outcome, which has a higher potential to reduce healthcare costs. Thus, when we 
transform 217 matching indexes into matching costs, we may assume the higher the matching index, 
the lower 218 the matching cost. For simplification. in this work, we assume the matching costs 
are known. 219 (2) Through some preliminary classification, the service time of patient i at service 
provider j, 220 di, j (i = 1, 2, · · · , n, j = 1, 2, · · · , k) is an independent, not necessary identically 
distributed random 221 variable, which is known to the decision-maker.
222

223 With the above information, the decision-maker of the specialty care needs to determine (1) as-
224 signment problem and (2) appointment scheduling problem. Specifically, t he a ssignment problem 
225 means how to assign those n patients to k service providers. We use xi, j (i = 1, 2, · · · , n, j = 1, 2, · · · , k) 
226 to denote the decision variable for assignment problem. If patient i (i = 1, 2, · · · , n) is assigned to 
227 service provider j ( j = 1, 2, · · · , k), xi, j = 1, otherwise xi, j = 0. Given the assignment, the appoint-
228 ment scheduling problem means, for each service provider, how to determine the start times (or 
229 equivalently the job allowances) for assigned patients. We use si, j (i = 1, 2, · · · , n, j = 1, 2, · · · , k) 
230 to denote the decision variable (i.e., job allowance) for appointment scheduling problem. And we 
231 have si, j = 0 if xi, j = 0, which means if patient i is not assigned to service provider j, then we 
232 do not leave any job allowance for that patient i at service provider j. We assume that once the 
233 assignment is fixed, the patients assigned to each service provider would go through their service ac-
234 cording to their index order, i.e., the service provider would handle patient i before patient i′ if i < i′. 
235

236 With any given assignment, for each service provider, the corresponding appointment scheduling 
237 degenerates into a classic appointment scheduling. For convenience and clarity, in the rest of this 
238 paper, we refer to a patient in the appointment system as a job and use the terms job and patient 
239 interchangeably.
240
241

242

Due to the randomness of the stochastic service times, patients’ waiting or service providers’ 
idling might come up. We use the term W̄ i, j (i = 1, 2, · · · , n, j = 1, 2, · · · , k) to denote the actual 
waiting time of patient i before it has been seen by service provider j. Then we have W̄ i, j = 0 if243

xi, j = 0.In order to derive the waiting times logically, we introduce the virtual waiting time Wi, j244

(i = 1, 2, · · · , n, j = 1, 2, · · · , k) for patient i at service provider j. The virtual waiting time Wi, j245

indicates the waiting time of patient i before she/he is seen by service provider j, regardless of the246

actual assignment of patient i. Given any assignment xi, j = 1, patient i may actually need to wait247

for service provider j to be served but must not wait for other service provider h , j. With the248

249 definition of virtual waiting time Wi, j, the actual waiting time W̄ i, j can be achieved by multiplying 
the virtual waiting time Wi, j by the assignment xi, j, i.e., W̄ i, j = xi, jWi, j.250

251

Next, we present how to derive virtual waiting times Wi, j recursively. In the classic single provider252

253 appointment scheduling problem, the actual waiting time is determined through the waiting time, 
254 the service time, and the job allowance of its preceding appointment recursively. However, for our 
255 problem, the actual service time is expressed as xi, j · di, j. Thus, in order to derive the virtual waiting
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times Wi, j, we can modify the service time of our problem and formulate the virtual waiting time256

Wi, j as follows:257

Wi, j = max{0, xi−1, jdi−1, j +Wi−1, j − si−1, j} i = 2, · · · n, j = 1, · · · k
W1, j = 0 j = 1, · · · k

(3.1)

Similarly, we define the virtual idle time Ii, j (i = 1, 2, · · · n, j = 1, 2, · · · k), , which denotes the258

idleness of service provider j after serving patient i. Note that for any service provider j, the259

summation ∑n
i=1 Ii, j equals to the actual idleness for service provider j. Thus, the notation of virtual260

idle time Ii, j is enough to depict our performance indicator and we do not need to define the actual261

idle time. In the rest of this paper, we will omit the term “virtual” for idle time Ii, j. Then we also262

derive the idle time Ii, j recursively as follows:263

Ii−1, j = max{0,−xi−1, jdi−1, j −Wi−1, j + si−1, j} i = 2, · · · n + 1, j = 1, 2, · · · k (3.2)
Note that we restrict all services that should be finished within a session length T for all service264

providers. As a result, the service system may incur some overtime for some service providers. We265

define O j ( j = 1, · · · k) to represent the overtime for service provider j, then it is derived as follows:266

O j = max{0, xn, jdn, j +Wn, j − sn, j} j = 1, 2, · · · k (3.3)
For the service system, again, mi, j states the cost for patient i being assigned to service provider267

j. Let cW
i denote the unit waiting time cost for patient i. And let cI

j and cO
j denote the unit idle268

time, and overtime cost for service provider j, respectively. We define a weight λ to balance the269

matching cost and the weighted operational costs. The objective is to optimize the assignment and270

appointment scheduling simultaneously, such that the expected weighted operational (i.e., waiting271

costs, idling costs, and overtime costs) and matching cost is minimized, as shown in equation (3.4):272

k∑
j=1

E
 n∑

i=1

(cW
i xi, jWi, j + cI

jIi, j) + cO
j O j

 + λ n∑
i=1

k∑
j=1

mi, jxi, j (3.4)

In the objective function (3.4), the weight λ is used to balance different dimensions of matching273

cost and the weighted operational costs. In practice, we may first test different values of λ to274

justify the corresponding matching and operational costs, and then select an appropriate value of275

λ to implement. Thus, in our numerical analyses section, we take the values of λ from 0 to 100.276

When λ = 0, it indicates that only the operational cost is considered. Besides, in the numerical277

analyses, we demonstrate the effect of the matching cost by increasing λ, which is the same as the278

standardization of the cost coefficients.279

Next, we construct constraints for our problem. For decision variables xi, j and si, j, we define the280

following constraints:281

n∑
i=1

xi, j ≥ 1 j = 1, 2, · · · , k

k∑
j=1

xi, j = 1 i = 1, 2, · · · , n

n∑
i=1

si, j = T j = 1, 2, · · · , k

(3.5)
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The first equation in (3.5) makes sure there should be at least one patient assigned to each282

service provider, because there is no necessary to keep one service provider idle in a session length.283

The second equation in (3.5) ensures each patient should be assigned to one service provider. The284

third equation in (3.5) indicates all appointments should be scheduled within session length T . In285

addition, we need to make sure si, j = 0 if patient i is not assigned to service provider j. Thus, we286

define the following inequalities to achieve this purpose:287

si, j ≤ Mxi, j i = 1, 2, · · · n, j = 1, 2, · · · k (3.6)

where M is a big number.288

Through recursive equations (3.1), (3.2), and (3.3), we derive the following equalities:289

Wi, j − Ii−1, j = xi−1, jdi−1 +Wi−1, j − si−1, j i = 2, 3, · · · n, j = 1, 2, · · · , k
O j − In, j = xn, jdn +Wn, j − sn, j j = 1, 2, · · · , k

(3.7)

With performance indicators derived in equations (3.1),(3.2) and (3.3), the objective is to jointly290

optimize the assignment and appointment scheduling, such that the expected weighted operational291

(i.e., waiting costs, idling costs and overtime costs) and matching cost is minimized. Thus, our292

studied problem can be formulated as the following stochastic model (M0):293

(M0) min
x,s

k∑
j=1

E
 n∑

i=1

(cW
i xi, jWi, j + cI

jIi, j) + cO
j O j

 + λ n∑
i=1

k∑
j=1

mi, jxi, j

s.t. (3.5), (3.6), (3.7)
xi, j ∈ {0, 1}, si, j ≥ 0

(3.8)

4. Proposed Method294

To solve this stochastic problem, we first exploit the SAA method to handle the stochastic295

296 service times. On this basis, an improved Benders decomposition algorithm with feasibility cuts is 
297 developed to solve the approximated problem efficiently.

298 4.1. SAA-based Formulation
299 As indicated in the literature, the SAA method is an efficient sc enario-based method fo r solv-
300 ing stochastic programming problems, and has been widely used to solve appointment scheduling 
301 problems [23, 37, 26]. Specifically, w ith g iven s ervice t ime d istribution d , w e r andomly generate 
302 H i.i.d. realizations. Then, the stochastic program (3.8) can be approximated by the following 
303 deterministic program (DP):
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(DP) min
x,s,W,I,O

1
H

H∑
h=1

k∑
j=1

 n∑
i=1

(cW
i xi, jWh

i, j + cI
jI

h
i, j) + cO

j Oh
j

 + λ n∑
i=1

k∑
j=1

mi, jxi, j

s.t.
n∑

i=1

xi, j ≥ 1 j = 1, 2, · · · , k

k∑
j=1

xi, j = 1 i = 1, 2, · · · , n

n∑
i=1

si, j = T j = 1, 2, · · · , k

si, j ≤ Mxi, j i = 1, · · · n, j = 1, · · · , k
Wh

i, j − Ih
i−1, j = xi−1, jdh

i−1 +Wh
i−1, j − si−1, j i = 2, · · · n, j = 1, · · · , k, h = 1, · · · ,H

Oh
j − Ih

n, j = xn, jdh
n +Wh

n, j − sn, j j = 1, · · · , k, h = 1, · · · ,H
Wh

1, j = 0 j = 1, · · · , k, h = 1, · · · ,H
xi, j ∈ {0, 1}, si, j ≥ 0

(4.1)

In the above deterministic program based on SAA, dh
i, j denotes the realization of service time304

(di, j) under realization h, the variables Wh
i, j, Ih

i, j and Oh
j denote the corresponding waiting time, idle305

306 time and overtime under realization h, respectively. Note that except for the original decision vari-
307 ables x and s, we let the performance indicators W, I and O as new decision variables, to linearize 
308 those performance indicators.
309

310 For the above deterministic program, it is a non-linear mixed-integer linear program. We can 
311 even introduce a big-M method to reformulate it as a mixed-integer linear program. However, when 
312 the problem size is large, it is difficult to achieve an optimal solution in a reasonable computational 
313 time. According to our preliminary test, when H = 1000, n = 40, k = 4, respectively, the optimal 
314 solution of the corresponding MILP cannot be achieved within 5 hours. Thus, we propose an 
315 improved Benders decomposition to solve above DP efficiently.

316 4.2. Improved Benders Decomposition
317 The Benders decomposition method is suitable for some large scale problems with special struc-
318 ture. Our problem has the structure that the subproblem can be solved to optimality without ac-
319 tually solving the corresponding problem, which is suitable for the Benders decomposition. Before 
320 we introduce the Benders decomposition method, we first analyze a  l ower b ound f or the objective 
321 function, which helps to generate some feasibility cuts for the proposed algorithm. We define the 
322 individual cost Ci, j for the original problem (M0) as follows:

Ci, j =

 E[cW
i+1xi+1, jWi+1, j + cI

jIi, j] i = 1, 2, · · · , n − 1
E[cO

j O j + cI
jIi, j] i = n

j = 1, · · · k (4.2)
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Lemma 1. For any given assignment x, the individual cost Ci, j is bounded as follows:323

Ci, j ≥
 xi+1, jgi, j i = 1, 2, · · · , n − 1 

gi, j i = n j = 1, · · · k (4.3)

where324

gi, j =


min

si, j

min
sn, j

E[ci
W
+1[di, j − si, j]+ + cI

j[di, j − si, j]−] i = 1, 2, · · · , n − 1 

E[c j
O[di, j − si, j]+ + cI

j[di, j − si, j]−] i = n j = 1, · · · k (4.4)

where [a]+ = max{a, 0} and [a]− = max{−a, 0}.325

Proof: For i = 1, 2, · · · , n − 1, j = 1, · · · k, we always have Ci, j ≥ xi+1, jE[ci
W
+1Wi+1, j + c I

jIi, j]. We now326

bound the right hand E[ci
W
+1Wi+1, j + c327

E[ci
W
+1Wi+1, j + cI

jIi, j] =E
[
ci

W
+1[Wi, j + di, j − si, j]+ + cI

j[Wi, j + di, j − si, j]−

I
jIi, j]. Based on the definition, we 

have ]
=EWi, j

{
Edi, j

[
ci

W
+1[Wi, j + di, j − si, j]+ + cI

j[Wi, j + di, j

]∣
− si, j]− ∣∣∣Wi, j

}
Suppose s∗i, j is the optimal solution to achieve gi, j such that si

∗
,j = arg minsi, j

Edi, j

[
ci

W
+1[di, j − si, j]+ + cI

j[di, j − si, j]−
]
.328

329 It follows that

gi, j ≤ Edi, j

[
ci

W
+1[di, j − s̃i, j]+ + cI

j[di, j − s̃i, j]−
]
, ∀s̃i, j

330

Therefore, for any realization of Wi, j, let s̃i, j = si, j − Wi, j, we have331

gi, j ≤ Edi, j

[
ci

W
+1[Wi, j + di, j − si, j]+ + cI

j[Wi, j + di, j

∣
− si, j]−

∣∣∣Wi, j

]
332

By taking expectation for random variable Wi, j for above equation, the inequality still holds,333

which implies E[ci
W
+1Wi+1, j + cI

jIi, j] is bounded by gi, j for any si, j.334

335 Similarly, we can also bound Ci, j when i = n. This completes the proof. �
Note that in Lemma 1, gi, j corresponds to the optimal cost of a general Newsvendor problem336

[38]. Given the cumulative distribution function Fi, j for di, j, the optimal solution s∗ i, j can be achieved337

through Fi, j(si
∗
,j) =

ci
W
+1

ci
W
+1+cI

j
for i = 1, · · · , n−1, j = 1, · · · , k. Thus, the optimal cost gi, j can be calculated338

339 easily.
With Lemma 1, for any given assignment x, the operational cost is bounded as 

∑k
j=1[
∑

i
n
=
−
1
1 xi+1, jgi, j+340

341 gn, j]. Furthermore, Lemma 1 helps to bound some variables in the master problem in the Benders 
342 decomposition algorithm. We will introduce it later.
343

We observe that for any solution (x, s), the operational costs are decomposable by scenario h344

345 and service provider j. And they can be determined through recursive equations (3.1), (3.2) and 
346 (3.3). Due to this kind of special structure, we further reformulate problem (4.1) as the following 
347 two-stage optimization problem:
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min
x,s

k∑
j=1

Q j(x, s) + λ
n∑

i=1

k∑
j=1

mi, jxi, j

s.t.
n∑

i=1

xi, j ≥ 1 j = 1, 2, · · · , k

k∑
j=1

xi, j = 1 i = 1, 2, · · · , n

n∑
i=1

si, j = T j = 1, 2, · · · , k

si, j ≤ Mxi, j i = 1, · · · n, j = 1, · · · , k
xi, j ∈ {0, 1}, si, j ≥ 0

(4.5)

where348

Q j(x, s) = min
W,I,O

1
H

H∑
h=1

 n∑
i=1

(cW
i xi, jWh

i, j + cI
jI

h
i, j) + cO

j Oh
j


s.t. Wh

i, j − Ih
i−1, j = xi−1, jdh

i−1, j +Wh
i−1, j − si−1, j i = 2, · · · n, h = 1, · · · ,H

Oh
j − Ih

n, j = xn, jdh
n, j +Wh

n, j − sn, j h = 1, · · · ,H
Wh

1, j = 0 h = 1, · · · ,H

(4.6)

The above problems (4.5) and (4.6) called master problem (MP) and subproblem(SP), respec-349

tively. As we mentioned, with the optimal solution obtained from problem (4.5), the optimal cost350

and solution of problem (4.6) can be achieved through recursive equations (3.1), (3.2) and (3.3)351

without actually solving the optimization problem. Thus, the remaining problem is how to use the352

solution of the second stage problem to verify the optimality of the master problem.353

354

Next, we analyze the optimal solution of the dual problem of Q j(x, s), which helps to find the355

optimal solution for the first problem (4.5). For each scenario h, let αh
i, j(i = 1, 2, · · · n, h = 1, 2, · · ·H)356

be the dual decision variable for the second problem (4.6), the dual form of the operational cost for357

service provider j under scenario h can be derived as follows:358

max
α

k∑
j=1

n∑
i=1

(xi, jdh
i, j − si, j)αh

i, j

s.t. αh
i−1, j − αh

i, j ≤ cW
i xi, j i = 2, · · · n, h = 1, · · ·H

− αh
i, j ≤ cI

j i = 2, · · · n, h = 1, · · ·H
αh

n, j ≤ cO
j h = 1, · · ·H

(4.7)

By the strong dual theorem, we can obtain the optimal solution of the dual problem (4.7)359

without actually solve it:360
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αh
i, j =

 αh
i+1, j + cW

i+1xi+1, j if Wh
i+1, j > 0

− cI
j otherwise

i = 1, · · · n − 1, h = 1, · · ·H (4.8)

αh
n, j =

 cO
j if Oh

j > 0
− cI

j otherwise
h = 1, · · ·H (4.9)

To solve the two-stage program (4.5) efficiently, we propose an improved Benders decomposition361

algorithm based on the optimal solution of (4.8) and (4.9). Following the idea of general Benders362

decomposition, the procedures of the Benders decomposition algorithm for our studied two-stage363

program are as follows: (1) Formulate the master problem MP as a relaxation form by replacing364

the optimal value Q j(x, s) with a new decision variable θ j (θ j ≥ 0). And then solve the new master365

problem and find an optimal solution s and sends it to the SP. (2) Evaluate whether the optimal366

solution obtained in the new master problem violates the optimality. If it does, then add optimality367

cuts generated by incorporating the optimal solution of the SP to the MP and go back to proce-368

dure (1); otherwise, the solution is globally optimal. (3) Repeat the above two procedures until an369

optimal solution is found.370

371

In this work, we also improve the standard Benders decomposition by adding the feasibility cuts372

θ j ≥
∑n−1

i=1 xi+1, jgi, j + gn, j j = 1, · · · n, which derives from Lemma 1. The set of feasibility cuts restrict373

the feasible region, which helps to solve the problem more efficiently. As for the optimality cuts374

{L(x, s) ≥ 0} that come from the optimal solution of the dual of the SP, due to the special structure of375

SP, the optimal solution can be achieved easily without actually solving the optimization problem.376

The pseudocode of the proposed improved Benders decomposition is presented in Algorithm 1.377

Algorithm 1378

Step 1: Input: Service time realization d, parameters cW , cI , cO, λ, and m. Set the set of379

optimality cuts {L(x, s) ≥ 0} = ∅.380

Step 2: Solve the master problem

(MP) min
x,s,θ

k∑
j=1

θ j + λ

n∑
i=1

k∑
j=1

mi, jxi, j

s.t.
k∑

j=1

xi, j = 1 i = 1, · · · n

k∑
i=1

xi, j ≥ 1 j = 1, · · · n

n∑
i=1

si, j = T j = 1, 2, · · · , k

si, j ≤ Mxi, j i = 1, · · · n, j = 1, · · · k

θ j ≥
n−1∑
i=1

xi+1, jgi, j + gn, j j = 1, · · · n

xi, j ∈ {0, 1}, si, j ≥ 0
L(x, s) ≥ 0

12



and record an optimal solution (x∗, s∗, θ∗).381

Step 3: Given (x∗, s∗) obtained from above MP, calculate the corresponding performance indi-382

cators W, I and O by recursive equations (3.1), (3.2) and (3.3) . And record ∑k
j=1 Q∗j(x

∗, s∗). On383

this basis, determine the optimal solution (α) to problem 4.7 for each scenario through recursive384

equations (4.8) and (4.9).385

Step 4: If ∑k
j=1 θ

∗
j ≥
∑k

j=1 Q∗j(x
∗, s∗), then386

stop and return (x∗, s∗, θ∗) as an optimal solution.387

Else388

add the set of cuts θ j ≥ 1
H
∑H

h=1

[∑n
i=1 dh

i, jα
h
i, jxi, j −

∑n
i=1 α

h
i, jsi, j

]
( j = 1, · · · , k), to the set of389

optimality cuts {L(x, s) ≥ 0}. And go to Step 2.390

End if.391

5. Incorporating No-shows392

In this section, the proposed method is extended to solve the matching and appointment schedul-393

ing problem by considering no-shows. Let pi denote the show up probability for patient i, which is394

known to the decision-maker. Let zi indicate whether patient i shows up for her appointment (i.e.,395

zi = 1 with probability pi) or not (i.e., zi = 0 with probability 1 − pi). And we also assume that the396

no-shows are independent for patients.397

The key idea is to treat the no-show patient as a “ghost” patients with 0 service time. Let d̃i, j398

denote the service time in the presence of no-shows. We can calculate the actual service time in399

the system through d̃i, j = zidi, j, where di, j is the service time without no-shows studied previously.400

By abusing notations, let Wi, j, Ii, j, and O j denote the corresponding virtual waiting time, idle time,401

and over time, respectively. Then, we have402

Wi, j = max{0, xi−1, jd̃i−1, j +Wi−1, j − si−1, j} i = 2, · · · n, j = 1, · · · k
Ii−1, j = max{0,−xi−1, jd̃i−1, j −Wi−1, j + si−1, j} i = 2, · · · n + 1, j = 1, 2, · · · k
O j = max{0, xn, jd̃n, j +Wn, j − sn, j} j = 1, 2, · · · k
W1, j = 0 j = 1, · · · k

(5.1)

403 In the presence of no-shows, if one patient is a no-show, we can regard the actual waiting time 
404 for him/her as zero. Thus, in the objective function, we only need to count the waiting time of 
405 those patients who actually show up. On this basis, the total cost under the no-show case is

k∑
j=1

E
 n∑

i=1

(cW
i xi, jziWi, j + cI

jIi, j) + cO
j O j

 + λ n∑
i=1

k∑
j=1

mi, jxi, j (5.2)

Note that zi is independent of (z1, · · · , zi−1), it must be independent of Wi, j. Thus, E
[
cW

i xi, jziWi, j

]
=406

piE
[
cW

i xi, jWi, j

]
. Let c̃W

i = picW
i , then the above equation (5.2) is equivalent to407

k∑
j=1

E
 n∑

i=1

(c̃W
i xi, jWi, j + cI

jIi, j) + cO
j O j

 + λ n∑
i=1

k∑
j=1

mi, jxi, j (5.3)

Note that equation (5.3) has the same form as equation (3.4), except the notations c̃W
i and d̃i, j.408

Therefore, the proposed method in section 4 can be applied for the case with no-shows.409

410
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6. Numerical Analyses411

In this section, we conduct numerical experiments to evaluate the performance of our proposed412

algorithm, and study the influence of different parameters on the optimal assignment and schedule.413

Specifically, we intend to compare the computational time between our proposed method and the414

benchmark. The benchmark is solving the corresponding MILP through CPLEX directly, which415

we will introduce later. Moreover, we investigate the optimal solutions under different scenarios416

(λ, (n, k)) and the effect of no-shows. We assume an i.i.d. normal distribution for the service time,417

i.e., di, j ∼ N(µ, σ2), i = 1, · · · n, j = 1, · · · k, which has been widely used in the appointment scheduling418

literature [11, 24]. Following the literature[21, 20, 36], we set the unit waiting time, idling time and419

overtime costs as cW
i = 0.2, cI

j = 1, cO
j = 1.5.420

6.1. Performance of Improved Decomposition Algorithm421

In this subsection, we study the performance of our proposed decomposition algorithm. We422

first reformulate the original deterministic problem (DP) as a deterministic mixed-integer linear423

program (MILP). And then we solve the MILP directly with CPLEX and use the corresponding424

results as the benchmark. Through the big-M transformation, the deterministic model (DP) can425

be reformulated as the following mixed-integer linear program:426

(DMILP) min
x,s,W,W̄,I,O

1
H

H∑
h=1

k∑
j=1

 n∑
i=1

(cW
i W̄h

i, j + cI
jI

h
i, j) + cO

j Oh
j

 + λ n∑
i=1

k∑
j=1

mi, jxi, j

s.t.
n∑

i=1

xi, j ≥ 1 j = 1, 2, · · · , k

k∑
j=1

xi, j = 1 i = 1, 2, · · · , n

n∑
i=1

si, j = T j = 1, 2, · · · , k

si, j ≤ Mxi, j i = 1, · · · n, j = 1, · · · , k
Wh

i, j − Ii−1, j = xi−1, jdh
i−1, j +Wh

i−1, j − si−1, j i = 2, · · · n, j = 1, · · · , k, h = 1, · · · ,H
Oh

j − Ih
n, j = xn, jdh

n, j +Wh
n, j − sn, j j = 1, · · · , k, h = 1, · · · ,H

W̄h
i, j ≥ Wh

i, j + (xi, j − 1)M i = 2, · · · n, j = 1, · · · , k, h = 1, · · · ,H
W̄h

i, j ≤ Wh
i, j i = 2, · · · n, j = 1, · · · , k, h = 1, · · · ,H

Wh
1, j = 0 j = 1, · · · , k, h = 1, · · · ,H

xi, j ∈ {0, 1}, si, j ≥ 0
(6.1)

Throughout this section, we randomly generate H = 1000 i.i.d. realizations based on given427

service time distribution. And then we solve the MILP directly with CPLEX. Finally, we illustrate428

the superiority of our method by comparing the running time with the benchmark.429

The parameters are presented as follows.430
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• The service times of all jobs at each server di, j follow a normal distribution N(20, 16).431

• The matching cost mi, j of patient i for physician j is generated by a uniform distribution432

U[0, 1].433

• The number of patients and physicians appear as pairs (n, k). We consider four pairs, i.e.,434

(20, 2), (30, 3), (40, 4) and (50, 5).435

• The session length is set at T = 1.5 · µ · n/k;436

For each pair (n, k), we generate 5 problem instances, for each problem instance, the λ is randomly437

438 generated from interval [10, 1000]. As a result, there are a total of 20 problem instances in our 
439 computational experiments. All instances are solved by calling CPLEX 12.6 on Matlab R2016a that 
440 runs on a PC with an Intel i5-4590 CPU and 12 GB memory. In our computational experiments, we 
441 set the limit of computational times to 5 hours (i.e., 18, 000 seconds). For our developed algorithm, 
442 we set the absolute tolerance at 0.01. Because the optimal objective value from our method is almost 
443 the same (the absolute tolerance is within 0.1) with that from the benchmark (those instances can 
444 be solved within 5 hours), we do not display the optimal value in this work. We compare the 
445 average, minimum and maximum computational times, which are summarized in Table 1.

Table 1: Comparison on the computational time between our method and benchmark (in second)
patients-physician Our method Benchmark

pairs Min. time Avg. time Max. time Min. time Avg. time Max. time

(20,2) 67 76 90 854 947 1,042

(30,3) 107 149 196 4,670 7,127 15,374

(40,4) 181 213 269 15,929 18,000 18,000

(50,5) 278 320 369 18,000 18,000 18,000

overall 158 189 231 9,863 11,018 13,104

As shown in Table 1, the average, minimum and maximum computational times of the proposed446

447 method are significantly shorter than the benchmark. Computational time increases with the 448 

increasing of n and k in pair (n, k) for both our method and the benchmark. As (n, k) increases, the 449 

computational time of our method increases slowly, while that of the benchmark increases rapidly. 450 

When (n, k) reaches (40, 4) and (50, 5), the benchmark cannot obtain the optimal solution before 451 

reaching the time limit (i.e., Ave.time =18,000), while our method can solve all problem instances 452 to 
optimality in a reasonable computational time. These facts indicate that our method is indeed 453 much 
more efficient than the benchmark. Moreover, there is no significant difference when λ ≥ 100 454 according 
to the experimental results. Therefore, we test λ ranged from 0 to 100 in the following 455 sections.

456 6.2. Analysis of λ in different scenarios
457 In this subsection, we analyze the effect of λ in different scenarios on the optimal solution and 458 the 
objective value. Specifically, we fix the pair of patients and physicians as (20, 2) and test differ-459 ent 
values of matching cost m and λ. During the numerical experiments, we construct four different 460 

scenarios for the matching between patients and physicians, i.e., the number of patients who match

15



the first physician best is 2, 4, 6, 8, respectively, which we use 1 : 9, 2 : 8, 3 : 7 and 4 : 6 to represent461

those four scenarios. We refer to scenario 1 : 9 as the most imbalanced patients-physician scenario.462

As for the matching cost m, we randomly generate from U[0.1, 0.3] if one patient match with the463

best-matched physician; otherwise, we randomly generate from U[0.8, 1]. Other parameters setting464

are the same as subsection 6.1.465

466

We first study the variant of the total cost in different scenarios as λ increases. As shown in467

Figure 1, all matching patterns appear an increasing trend as λ increases. Furthermore, the more468

imbalanced of patients-physician matching, the higher total the cost it has. This because the im-469

balanced matching pattern would result in a higher matching cost to the optimal solution, and470

further amplify the total cost through λ.471

472

Figure 1: Comparison of the optimal total cost

Then, we break down the total cost and further study the variant of its corresponding opera-473

tional and unit matching costs. The operational cost refers to the total expected weighted costs of474

patients’ waiting times and service providers’ idle times and overtimes under the optimal solution,475

i.e., ∑k
j=1 E

[∑n
i=1 (cW

i x∗i, jWi, j + cI
jIi, j) + cO

j O j

]
. The unit matching cost refers to the total matching476

cost without weighted by λ under the optimal solution, i.e., ∑k
j=1
∑n

i=1 mi, jx∗i, j. As shown in Figure 2,477

both the operational cost and unit matching cost of the scenario 4 : 6 remains stable as λ changes.478

However, for other matching scenarios, the operational costs increase as λ increases, while the unit479

matching costs exhibit an opposite trend. The reason is that when λ is large, the optimal assign-480

ment would result in an unbalance operational pattern to avoid a considerable matching cost, thus481

leads to higher operational costs. But for the more balanced matching scenario (e.g., scenario 4 : 6),482

the weight λ has no significant impact on the assignment. Besides, both the operational cost and483

unit matching cost witness a more significant fluctuation when the matching scenario is unbalanced484

(e.g., scenario 1 : 9). However, for the operational cost, it seems that the more stable matching485

scenario, the less operational cost it has. The difference of operational costs between scenarios 1 : 9486

and 4 : 6 goes up to 51%, while the difference of unit matching costs between them goes up to 54%.487

488

Moreover, we study the pattern of patients assigned to the first physician as λ changes for dif-489

ferent matching scenarios. As shown in Figure 3, we can see that the number of patients assigned490
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a. Operational cost b. Unit matching cost

Figure 2: Comparison of the operation cost and the unit matching cost

to the first physician exhibits a non-increasing trend as λ increases for all four matching scenarios.491

This result indicates that when the weight of matching is large, the optimal solution would assign492

more patients to the most matched physician. Otherwise, the optimal solution would balance the493

operational workload for each physician. Furthermore, when the scenario is more balanced (i.e.,494

scenario 4 : 6), λ is not a significant factor to the patient assignment. Another interesting ob-495

servation is that there exist some overlaps for four scenarios and scenario 1 : 9 overlaps all other496

scenarios. It may due to scenario 1 : 9 is the most imbalanced case. When λ increases, patients497

tend to be assigned to the first physician, such that a higher matching cost is avoided.498

499

Figure 3: Comparison of the number of patients assigned to the first physician

500 6.3. Analyses of λ with no-shows
501 We further analyze the effect o f no-shows on the optimal solution and the objective v alue. We 
502 assume an i.i.d. show up indicator, i.e., pi = p, and set the show up probability p takes values 
503 from 0.6 to 0.9 with an increment of 0.1. By considering the no-shows, we reset the session length 
504 as T = 1.5µpn/k, such that it can adapt according to patients’ no-show behaviors. From Figure 2a 
505 , we observe a more substantial fluctuation o f the operational cost when the matching s cenario is

17



unbalanced. Thus, we set (n, k) at (20, 2) and choose scenarios 1 : 9 to analyze objective value and506

performance indicators. Moreover, there is a small variation of the operational cost when λ ≤ 50.507

Therefore, to obtain an apparent comparison result for performance indicators, we test two different508

values of λ (i.e., λ = 50, 100), and examine the impact of λ on performance indicators. The other509

parameters (e.g., m, d, cW
i , c

I
j, c

O
j ) are the same with scenario 1 : 9 in section 6.2.510

511

a. Total cost b. Operational cost c. Unit matching cost

Figure 4: Comparison of the optimal cost with no-shows

The optimal total, operational, and unit matching costs are presented in Figure 4. As the same512

as we discussed in section 6.2, λ has the a positive impact on the total and operational costs and513

negative impact on the unit matching cost. It is intuitive that the total cost increases as the show514

up probability p increase, as shown in Figure 4a. We also observe the same effect of the show up515

probability on the unit matching cost when λ = 50. However, when λ is substantial (e.g., λ = 100),516

the show up probability has no influence on the unit matching cost, as shown in Figure 4c. It is517

more surprising to observe that the operational cost has an increasing trend when λ = 100 while an518

decreasing trend when λ = 50. Therefore, we decompose the operational cost and further analyze519

the total waiting times, idle times, and overtimes, as shown in Figure 5.520

a. Total waiting times b. Total idle times c. Total overtimes

Figure 5: Comparison of operational indicators

521 From Figures 5a and 5b, we can see that the total waiting times under both values of λ decrease 
522 as the show up probability p increases, while the total idle times witness an opposite trend. This 
523 phenomenon can be explained as follows. In each configuration combination o f (λ, p ), the average 
524 job allowance for each patient can be approximated as 1.5µ = 30 roughly (Note that we set the 525 

session length as T = 1.5 · µ · p · n/k). However, the average service time is µ = 20. It would be 526 more 
idleness than waiting for the service system. Thus, as the show up probability increases, the 527 number of 
show up patients increases, which leads to the decreasing of waiting times and increasing 528 of idle times. 
This kind of trend is amplified as λ increase. Furthermore, from Figure 5c, we can
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observe that the total overtimes decrease when λ = 50 and increase when λ = 100 as the show up529

530 probability increases. The server system has a higher probability to suffer an overload when λ = 100 
531 than λ = 50. Since the average job allowance is considerably longer than the average service time, 
532 the more show up patients, the more idleness, thus less overtimes when λ = 50. However, when 533 λ = 
100, the optimal assignment has a high chance to overload for one server. Therefore, more 534 overtime 
may occur as the number of show up patients increases. As a result, when λ = 100, the 535 total overtime 
increases as the show up probability p increases.

536 7. Managerial Implications

In this section, we summarize some managerial insights from the numerical results of this study.537

First, a more balanced supply and demand result in a lower total cost. From Figure 1, we can538

observe that for any fixed λ, the more imbalanced scenario would result in a higher total cost.539

This result indicates that if we want to achieve a lower total cost for the system, a more balanced540

scenario, i.e., scenario 4 : 6, is more desirable. Furthermore, as λ increases, the total cost increase541

for all scenarios. We also can observe that the more unbalanced scenario, i.e., scenario 1 : 9, the542

faster-increasing speed of total cost. This result implies that when matching becomes more impor-543

tant, the service provider should pay more effort to balance physicians’ specialties and patients’544

diseases.545

546

Second, the weight of the matching cost has a positive impact on the operational cost. From547

Figure 2, we can see that there is no significant difference for the operational costs among different548

scenarios when λ is small (e.g., λ ≤ 10). As λ increases, the marginal operational cost increases549

while the marginal unit matching cost decreases. The operational cost increases at a swift speed550

as matching becomes more critical. It is because the overtime cost of matched physicians and551

waiting time of patients increases significantly while other mismatched physicians are idle for the552

unbalanced scenario, i.e., scenario 1 : 9.553

554

Third, we would suggest the service provider to develop or train the specialty set based on the555

disease pattern of local patients, such that the workload among physicians can be more balanced.556

From Figure 3 we can see that when the weight λ is large (e.g., λ = 100), the workload among557

different service providers is imbalanced, which means there may be a waste of resources to some558

degree. Therefore, the specialty set of physicians is critical to balance the physician workload.559

560

Fourth, when the weight of the matching cost is not substantial, we would suggest penalizing561

the no-show patient, such that the operational cost is minimized. However, when the weight of the562

matching cost is considerable, which means the matching is more critical to the health care quality,563

the patient has a higher motivation to see the matched physician. Therefore, the no-show has less564

influence on the service system.565

8. Conclusion and future work566

In this paper, we jointly optimize a matching problem and appointment problem with multiple567

service providers, in which the decision-maker determines how to assign patients to physicians and568

when to start serving patients for each service provider. We assume the service times are stochastic569
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and all patients would arrive at the service system punctually at their scheduled times. The ob-570

jective is to minimize total weighted matching costs and operational costs (patients’ waiting time571

costs, service providers’ idle time and overtime costs). To solve the problem, we first reformulate572

the studied problem as a two stage optimization problem based on the SAA approach. And then573

the properties for the optimal solution of the second stage problem are analyzed. On this basis,574

an improved benders decomposition algorithm is proposed to solve this problem efficiently. We575

also extend our method to incorporate no-shows. Finally, we conduct computational experiments576

to evaluate the efficiency of our proposed algorithm and investigate the variation of the optimal577

solutions yielded in different scenarios.578

579

Our studies mainly show that: (1) the integrated matching problem and appointment scheduling580

can be formulated as a two-stage optimization problem; (2) the improved Benders decomposition581

algorithm is efficient to solve our studied problem in a reasonable time; (3) the optimal solution582

would assign patients to the most matched physicians if the matching cost dominate operational583

cost, otherwise, the optimal solution would balance the workload of physicians as much as possible;584

and (4) the no-show has less influence on the service system when the weight of the matching cost585

is substantial.586

587

Our work can be extended in several aspects. We assume a fixed sequence for patients at each588

service provider, due to different type of patients, it may be valuable to optimize the sequence for589

patients at each service provider. Furthermore, unpunctuality is also inevitable in practice, which590

may lead to patients arriving out of order. In the future, we may also handle these stochastic591

factors.592
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