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Maximizing the Throughput of a Rotating Seru with Nonpreemptive 

Discrete Stations 

Seru production systems are an effective way to respond to ever-changing market 

demand. This paper focuses on maximizing the throughput of rotating serus with 

nonpreemptive stations, where a worker's operations cannot be disrupted. We analyze 

the effects of unbalanced worker velocities on non-value-added idle times. Through 

the use of dynamical system theories, we explicate the mechanism and dynamics of 

rotating serus, and identify the rules used to coordinate workers and distribute work 

content among stations to achieve the highest throughput. These findings provide 

practical guidelines for managers in floor shops for optimizing rotating seru design 

and maximizing throughput. Additionally, we explore the chaotic characteristics of 

rotating serus and simulate the effect of various factors on throughput. Finally, our 

comparative analysis demonstrates that the rotating seru offers a viable alternative to 

existing production systems to adapt to fluctuating demand. 

Keywords: Production systems; Bucket brigade; Work coordination; Order picking. 

 

1. Introduction 

A rotating seru is a type of production line that is staffed by two or more cross-

trained workers. These lines are typically organized in a U-shaped layout. Each worker 

in a rotating seru is responsible for assembling a product from start to finish, carrying 

the product and moving it sequentially from station to station for value-added 

operations. After completing assembly at the final station, the worker then moves to 

the first station to begin assembling another product. As illustrated in Figure 1(a), the 

operation sequence of each worker is from left to right on the upper line, then from the 

top to the bottom on the vertical line, and finally from right to left on the bottom line. 

The minimum number of workers for a rotating seru is two; a single worker seru is 

known as a yatai. The dynamics of a rotating seru are similar to a game of rabbit-

chasing, with each worker chasing the worker ahead of her/him and being chased by 

the worker behind her/him. When a faster worker catches up with a slower worker, 

the faster worker passes the slower worker. This paper examines methods for 

maximizing the throughput of a rotating seru. 

Seru production systems are converted from traditional assembly lines to adapt to 

volatile markets characterized by frequently changing product models/types and 

fluctuating volume caused by short product life cycles and variable and surge demand. 

An assembly line can be dismantled and converted into a seru system that consists of 

one or more serus. According to Sull (2009), there are two approaches to doing business 

in a volatile market: companies can use agility to exploit emerging business 
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opportunities or they can rely on tenaciousness to maintain the strength and stamina 

to weather market shifts. Sull recommended combining both approaches, which he 

called "agile tenaciousness", and suggested that an agile tenacious company can be 

created by breaking up a large organization into multiple independent, smaller profit-

and-loss units. Transitioning to a seru system resembles Sull’s framework: a large 

assembly line is broken up into multiple smaller, independent serus. The practice of 

seru production provides a way to create agile tenacious assembly systems. 

       0
1

 
(a). A rotating assembly seru              (b). Component picking in a warehouse 

Figure 1. Examples of production and order picking using rotating serus. 

A key advantage of a rotating seru is its ability to flexibly handle significant 

fluctuations in production volume. For instance, if a seru system comprises several 

yatais, during a demand surge (such as occurs prior to shopping holidays), additional 

workers can be allocated to one or more yatais to increase production capacity. As a 

result, these yatais can be converted into rotating serus and then revert to yatais after 

the demand surge ends. See Kaizen.net (2021) for examples of such applications. 

A rotating seru possesses several characteristics, as shown in Matrix 1. Some 

important concepts are defined as follows. A line is discrete if it is composed of distinct 

stations at which an item is assembled in a sequential manner. A station is preemptive 

if it can accommodate multiple workers at the same time; otherwise it is nonpreemptive. 

A worker has a constant velocity if she/he maintains the same pace (spends the same 

amount of time) at each station; otherwise the worker has varied velocity. The work 

content, or labor content, of a product type is defined as the total assembly time at all 

stations required to assemble a single item. The assembly time at a specific station is 

referred to as the work content of that station. We next give several examples. 

Matrix 1. Characteristics of production and picking lines. 

 Preemptive Nonpreemptive 

Constant velocity Constant, Preemptive Constant, Nonpreemptive 

Varied velocity Varied, Preemptive Varied, Nonpreemptive 

The use of rotating serus is prevalent in electronics factories, with companies such 

as Canon, Sony, Hitachi, Mitsubishi, Yaskawa, Pioneer, and Cosel reported to be using 

them in their operations (Matsuo, 2013). One example is a Japanese automobile 

component assembly factory in Kyushu, where the assembly process involves five 

distinct stations. This factory implemented rotating serus in 2011 to better handle 

frequent fluctuations in production volume. In the plants of Canon (Stecke et al., 2012; 
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Yin et al., 2008, 2017; Asao et al., 2014), rotating serus are often arranged in a U-shape 

or L-shape. Each worker performs all necessary tasks from start to finish without 

interruption. When a faster worker catches up with a slower worker, the faster worker 

passes the slower worker and continues working. Canon uses rotating serus not only 

in assembly operations, but also for order picking in their warehouses (see Figure 1(b)). 

Components are picked by two workers, with the layout and flow of components in 

the warehouse similar to that of the assembly serus. This approach to order picking is 

not unique to Canon; similar applications have been observed in the printing industry 

and in the plants of Washlet (electronic bidet) manufacturer TOTO (Hirasakura, 2019). 

A practice used in the literature on production line analysis (Bartholdi and 

Eisenstein, 1996) is to standardize the work content of a product to one “time unit.” 

For example, if the work content of a product is 36 minutes, it can be normalized to 1 

unit by dividing 36 by 36. For constant velocity in Matrix 1, the work content of a 

product is evenly distributed throughout the production line. This is represented by 

normalizing the work content to one time unit, with the length of the production line 

also being equal to one. The length of each station corresponds to the percentage of 

work content performed there, and the position of an item on the production line 

represents the cumulative fraction of work content completed. For example, if a 

production line consists of three stations with lengths of 0.4, 0.3, and 0.3 respectively, 

an item in the middle of station 2 has completed 0.55 (0.4 + 0.15) of its work content. 

The length (i.e., work content) of each station can be readjusted so that the velocity of 

a worker is constant throughout the production line (i.e., so that the worker spends the 

same amount of time completing the operation at every station).  

In an order picking line, a worker picks required items from a bin at each station, in 

order. The picking velocity of a picker at a station is determined by the experience of 

the picker and the density of the station (the quantity of items in a bin divided by the 

size of the bin). Therefore, for a picking line that consists of stations of the same density, 

a worker's velocity is constant throughout the line and determined by her/his picking 

experience. The density of a station, or bin, can be adjusted by adding or removing 

items. The size of a bin determines its preemptive property, with a larger bin being 

able to accommodate multiple pickers and a smaller bin being unable to do so. These 

characteristics are summarized in the first row (constant velocity) of Matrix 1. 

Production lines can be complex, as operations often vary from station to station. 

This can lead to varied velocities across stations. However, in some cases, a standard 

velocity is the same at each station. For example, in a design-for-assembly modular 

product, where different modules are assembled together, all modules have the same 

interface (one that complies with industrial standards), resulting in the same assembly 

operation at each station (Sekine, 2018). Bartholdi and Eisenstein (1996) showed that a 
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production line can be perfectly balanced by allocating the work content evenly 

throughout the line. In other words, the work content (or length) of the stations can be 

adjusted to achieve constant velocity. This can be easily verified using Little's law. 

Perfect balance means that every station has the same processing time (since there is 

no bottleneck). Velocity is the reciprocal of the processing time. In terms of preemptive 

property, when a station cannot accommodate more than one worker (e.g., when there 

is only one tool at the station), it is nonpreemptive; otherwise it is preemptive. These 

characteristics are summarized in the first row (constant velocity) of Matrix 1. 

The second scenario in Matrix 1 (second row: varied velocity) is characterized by the 

inability to reallocate the work content of a station, resulting in varying velocities 

across different stations. This is commonly observed in production lines where 

operations are dissimilar across stations and workers possess varying skill levels for 

different tasks—for example, if worker 1 is faster than worker 2 for the operations in 

stations 1 and 2, but slower for the operation in station 3. Similarly, in order picking 

lines, varied velocity across stations is often attributed to varying bin density. These 

characteristics are summarized in the second row (varied velocity) of Matrix 1. 

This paper is the first study to investigate the mechanism of a rotating seru. We focus 

on problems in the category of constant velocity and nonpreemptive. Problems that 

are nonpreemptive in nature are more challenging than those that are preemptive. 

Similarly, problems that involve varied velocity are more difficult to solve than those 

that involve constant velocity. Problems in some of the categories shown in Matrix 1 

have been studied in the literature in the context of bucket brigades. For example, 

studies by Bartholdi and Eisenstein (1996) and Lim and Yang (2009) fall under the 

category of constant velocity and preemptive. McClain et al. (2000) is an example of a 

study that falls under the category of constant velocity and nonpreemptive. Wang et 

al. (2021) is an example of a study that falls under the category of varied velocity and 

preemptive. We were unable to find any publications that fall under the category of 

varied velocity and nonpreemptive, which is considered to be the most challenging 

category of research questions. Our study contributes to the literature in the category 

of constant velocity and nonpreemptive within the context of rotating serus. Other 

bucket brigade publications include those by Bartholdi and Eisenstein (2005), 

Armbruster and Gel (2006), Armbruster et al. (2007), Bartholdi et al. (2009), Lim (2011), 

Lim and Wu (2014), Lim (2017), Bukchin et al. (2018), and Cantor and Jin (2019). 

 

2. Rotating Serus with Nonpreemptive Discrete Stations 

  In this section, we analyze rotating serus by establishing rotating seru rules and 

identifying the properties of rotating serus. 

 

2.1. Rotating serus rules 
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We consider a rotating seru with 𝑚 stations and two workers, as depicted in Figure 

2. We focus on the category of constant velocity and nonpreemptive, as shown in the 

upper right-hand quadrant of Matrix 1. The work content in this category is uniformly 

distributed across each station. To facilitate analysis, we normalize the work content 

of a rotating seru to 1, which also represents the length of the seru. The work content 

on each station (which is also the length of the station) is deterministic. Let 

𝑠𝑖  (𝑖 = 1,2, … ,𝑚) denote the work content on the 𝑖th station, so that ∑ 𝑠𝑖
𝑚
𝑖=1 = 1. Each 

worker continuously moves along a station as she/he progressively works on it. The 

initiation and completion of the rotating seru is represented by positions 0 and 1, 

respectively. The two workers’ positions along the rotating seru can be viewed as the 

cumulative fraction of work content completed on their items. For example, if a worker 

is at position 0.65, this means that she/he has completed 65% of the assembly of the 

item in her/his hand. The two workers work forward with constant velocities of 𝑣1 

and 𝑣2. We assume that worker 1 is faster than worker 2, that is 𝑣1 > 𝑣2. 

 

Figure 2. A rotating seru with 𝑚 stations and two workers. 

Three rules that are used to coordinate workers are summarized as follows. 

The Passing Rule: 

When a faster worker is ready to work at a station, say station 𝑖, but it is occupied 

by a slower worker, the faster worker must wait until the slower worker completes 

her/his work at that station. Once the slower worker finishes, the faster worker passes 

the slower worker. They exchange items with each other. The faster worker then works 

at station 𝑖 + 1. The slower worker works at station 𝑖 again. 

The Blocking Rule: 

If a slower worker is ready to work at a station that is occupied by a faster worker, 

the slower worker must wait until the faster worker completes her/his work at that 

station. Once the faster worker finishes, each worker will continue working on their 

own item. 

The Circling Rule: 

Once a worker completes an item at the exit of a seru, she/he relinquishes the 

completed item, walks across the aisle between the exit and the starting position of the 

seru, and initiates work on a new item. 

These three rules, derived from observations of various rotating seru practices, 

provide a comprehensive understanding of most rotating seru behaviors. However, it 
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is important to note that there are other rules (such as the use of buffers between 

stations, collaboration between workers on certain stations, and assistance from 

supervisors) that are not covered in this paper. These additional rules can be explored 

in future studies. 

 

2.2. Behaviors and cycles 

Our goal is to maximize the throughput of a rotating seru by reducing non-value-

added idle times. To achieve this, we use tools from dynamical system theories, which 

are building blocks for chaos theory and self-organized processes. Many production 

line studies (e.g., Bartholdi and Eisenstein, 1996) have applied tools from dynamical 

systems to construct a self-organized line (i.e., a production line that can automatically 

balance itself). The concepts used in this study are explained as follows. 

A ‘state’ refers to the vector of variables that describes a system at a particular point 

in time. For example, an atmospheric state can be represented by the vector 𝑎 

consisting of three variables 𝑎 = (𝑥, 𝑦, 𝑧) , where 𝑥 , 𝑦 , and 𝑧  are temperature, 

pressure, and wind speed, respectively, at a specific time and location. The evolution 

of the state of the system over time is described by a system function 𝑓. For example, 

the state of the atmosphere at a specific time and location (e.g., March 3rd at 10 a.m. in 

Kyoto, Japan) can be represented by 𝑎(0) = (𝑥(0), 𝑦(0), 𝑧(0)) = (15c, 1013hPa, 20km/h). 

Using a state vector (e.g., 𝑎(0)) as input, a system function (e.g., Lorenz atmospheric 

function 𝑓) can generate the subsequent state 𝑎(1) = (𝑥(1), 𝑦(1), 𝑧(1)) = (17c, 1015hPa, 

15km/h) at a subsequent time point (e.g., March 4th at 10 a.m.) at the same location 

through 𝑎(1) = 𝑓(𝑎(0)) . 𝑎(0)  can be either deterministic (e.g., if 𝑎(1) = 𝑓(𝑎(0))  is 

calculated in the evening of March 3rd), or random (e.g., if 𝑎(1) = 𝑓(𝑎(0)) is calculated 

before March 3rd). It is important to note that although the system evolves in 

continuous time, the states are events at certain discrete time points, such as 10 a.m. 

every day for the atmospheric system. Additionally, the superscript 𝑡 = 0, 1, … of the 

vector 𝑎(𝑡) represents the index of states, not the time point. For example, 𝑎(0) and 

𝑎(1) represent the initial and second states, recorded at 10 a.m. on March 3rd and 4th, 

respectively, not time points 0 and 1. 

A function is a map if its domain space and range space are the same. Let 𝑓 be a 

map and 𝑎(0) be a state. The sequence of states 

O(𝑎(0)) = {𝑎(0), 𝑎(1) = 𝑓(𝑎(0)), 𝑎(2) = 𝑓(𝑎(1)) = 𝑓(𝑓(𝑎(0))),

𝑎(3) = 𝑓(𝑎(2)) = 𝑓(𝑓(𝑓(𝑎(0)))), … } 

is defined as the orbit of 𝑎(0) under 𝑓. We usually write 𝑓2(𝑎(0)), 𝑓3(𝑎(0)),… in place 

of 𝑓 (𝑓(𝑎(0))) , 𝑓 (𝑓 (𝑓(𝑎(0)))) , … . Therefore, we have 

𝑎(𝑡+1) = 𝑓(𝑎(𝑡)) = 𝑓𝑡+1(𝑎(0)) 

as before, where 𝑡 (𝑡 = 0, 1, 2,… ) is the index of states that vary over time. The orbit 
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of 𝑎(0) under 𝑓 can be written as O(𝑎(0)) = {𝑎(0), 𝑓(𝑎(0)), 𝑓2(𝑎(0)), 𝑓3(𝑎(0)),… }. 

In an orbit O(𝑎(0)), if there exists a state 𝑎(𝑡) (𝑡 ≥ 0) and a positive integer 𝑛, such 

that 𝑎(𝑡) = 𝑓𝑛(𝑎(𝑡)), then we say that the orbit O(𝑎(0)) has a period-𝑛 cycle, and we 

call 𝑎(𝑡)  a periodic state of the period-n cycle. For example, the orbit 

{.36, .78, .66, .45, .56, .45, .56, .45, .56, …} has a period-2 cycle, and .45 is the initial 

periodic state. 

Next, we construct a rotating seru system using dynamical system theories as follows. 

Based on the rotating seru rules given in Section 2.1, we define three types of behaviors 

to model the dynamics of a rotating seru with nonpreemptive discrete stations. 

⚫ 𝑃 = {𝑝1, 𝑝2, … , 𝑝𝑚}: the set of passing behaviors. 𝑝𝑖 denotes that a pass occurs on 

station 𝑖 (𝑖 = 1,2,… ,𝑚). 

⚫ 𝐵 = {𝑏1, 𝑏2, … , 𝑏𝑚}: the set of blocking behaviors. 𝑏𝑗 denotes that a block occurs 

on station 𝑗 (𝑗 = 1,2, … ,𝑚). 

⚫ 𝐶 = {𝑐1, 𝑐2} : the set of circling behaviors. 𝑐𝑘  denotes that worker 𝑘  (𝑘 = 1, 2 ) 

completes an item and initiates a new item. 

It is important to note that the passing and circling behaviors apply to all stations 

within the assembly process. This means that these behaviors can occur at any station, 

including the final station. For example, when worker 2 is completing operations on 

station m, worker 1 may arrive at the beginning of that station. In this scenario, a 

passing event 𝑝𝑚 would occur, and based on the passing rule, worker 1 would have 

to wait for worker 2 to finish her/his work on station m before they can exchange items. 

Once this exchange is completed, worker 1 would proceed to the end of station m, 

where a circling behavior 𝑐1 would occur. Then, worker 2 would begin working on 

station m again from the start. 

 
(a) 𝑝𝑖, 𝑖 = 1,2… . ,𝑚 
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(b) 𝑏𝑗, 𝑗 = 1,2… . ,𝑚 

Figure 3. The movement of two workers incorporating passing and blocking. 

Figure 3 illustrates the movement of two workers within a rotating seru that 

incorporates passing and blocking behaviors. Figure 3(a) and Figure 3(b) provide 

examples of passing and blocking on stations 𝑖 and 𝑗, respectively. The time it takes 

for a worker to walk between stations is not considered as the stations are located close 

to each other and the aisle is narrow. 

Let 𝐴 = 𝑃 ∪ 𝐵 denote the set of all passing and blocking behaviors. Let 𝑓: 𝐴 → 𝐴 

be a map. 𝑓 determines the next state 𝑎(𝑡+1) ∈ 𝐴 based on the present state 𝑎(𝑡) ∈ 𝐴, 

that is 𝑎(𝑡+1) = 𝑓(𝑎(𝑡)) . We study the dynamics of a rotating seru by analyzing the 

properties of its orbit O(𝑎(0)) = {𝑎(0), 𝑎(1), … , 𝑎(𝑡), … }  = {𝑎(𝑡) = 𝑓𝑡(𝑎(0))}
𝑡=0

∞
 . This 

simplification frees us from having to worry about the details of the continuous time 

evolution of a rotating seru; instead, we can restrict our attention to all feasible states 

within an orbit. We find periodic cycles within an orbit as follows. 

THEOREM 1. For any m-station two-worker rotating seru system, let 𝑥1  and 𝑥2 

denote the arbitrary initial positions of workers 1 and 2, respectively; let 𝑣1 and 𝑣2 

denote the work velocities of workers 1 and 2, respectively; and assume 𝑣1 > 𝑣2. There 

exist period-n cycles 𝑎(𝑡) = 𝑓𝑛(𝑎(𝑡)) (𝑛 ≥ 1, 𝑡 ≥ 0) in the rotating seru system. For any 

combination of (𝑥1, 𝑥2, 𝑣1, 𝑣2), this cycle is unique. 

All proofs are in Section A.1 of the online Appendix. Example 1 in Section A.2 of the 

Appendix illustrates Theorem 1. 

Our main result is that, regardless of the initial positions (or initial states) of workers, 

the orbit of an m-station two-worker rotating seru becomes periodically locked in a 

sequence of passing and/or blocking behaviors. This is desirable because it creates 

positive effects such as improved efficiency due to the repetition of familiar work and 

better coordination among workers. Additionally, even if the workers’ work velocities 

increase, the system can still maintain a periodic behavior without the need for 

management intervention. 

The orbit O(𝑎(0)) = {𝑎(0), 𝑎(1), … , 𝑎(𝑡), … }  (where 𝑎(𝑡) ∈ 𝐴 ) under the system 

function 𝑓 : 𝐴 → 𝐴  (where 𝐴 = 𝑃 ∪ 𝐵 ) of a rotating seru records the evolution of 
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passing and blocking behaviors. The focus of this paper is throughput, which is 

defined as the quantity of items completed during a time unit in a rotating seru. 

O(𝑎(0))  does not contain the information necessary for calculating throughput. A 

circling behavior 𝑐𝑘 denotes that worker 𝑘 (𝑘 = 1, 2) completes an item and initiates 

work on a new item. Therefore, properties such as the frequency and sequence of 

circling behaviors 𝐶 = {𝑐1, 𝑐2}  between two successive states 𝑎(𝑡)  and 𝑎(𝑡+1)  (𝑡 =

0, 1, …) of an orbit O(𝑎(0)) can tell us the number of items completed by each worker. 

For example, if 𝑎(𝑡)𝑎(𝑡+1) is present, it indicates that there is no item completion 

between states 𝑎(𝑡)  and 𝑎(𝑡+1) . On the other hand, if 𝑎(𝑡)𝑐1𝑐2𝑐1𝑎
(𝑡+1)  is present, it 

indicates that workers 1 and 2 completed 2 and 1 items respectively, between states 

𝑎(𝑡) and 𝑎(𝑡+1), and that the sequence of item completion was: one by worker 1, then 

one by worker 2, and then another one by worker 1. By incorporating these circling 

behaviors into an orbit, we can calculate the throughput of a rotating seru. We can 

identify the frequency and sequence properties of these circling behaviors 𝐶 = {𝑐1, 𝑐2} 

between two successive states 𝑎(𝑡)  and 𝑎(𝑡+1)  (𝑡 = 0, 1, … ) of an orbit O(𝑎(0))  by 

using the following lemma. 

LEMMA 1. Let 𝑎(𝑡) (𝑡 = 0, 1,…) be an arbitrary state of an orbit O(𝑎(0)). If 𝑐1 occurs 

between two successive states 𝑎(𝑡) and 𝑎(𝑡+1), we have the following: 

(1) If 𝑐2 also occurs between 𝑎(𝑡) and 𝑎(𝑡+1), the sequence of circling behaviors 𝐶 =

{𝑐1, 𝑐2}  between 𝑎(𝑡)  and 𝑎(𝑡+1)  can only begin with 𝑐1  (i.e., 𝑎(𝑡)𝑐1…𝑎
(𝑡+1) ). In 

other words, the sequence pattern 𝑎(𝑡)𝑐2…𝑎
(𝑡+1) is impossible. 

(2) If 𝑐2 also occurs between 𝑎(𝑡) and 𝑎(𝑡+1), 𝑐1 and 𝑐2 occur alternately between 

𝑎(𝑡) and 𝑎(𝑡+1). This mean that two consecutive completions by the same worker 

is impossible. In other words, we always have 𝑎(𝑡)…𝑐1𝑐2…𝑎
(𝑡+1)  or 

𝑎(𝑡)…𝑐2𝑐1…𝑎
(𝑡+1)  between 𝑎(𝑡)  and 𝑎(𝑡+1) ; and 𝑎(𝑡). . . 𝑐1𝑐1. . . 𝑎

(𝑡+1)  and 

𝑎(𝑡). . . 𝑐2𝑐2. . . 𝑎
(𝑡+1) are impossible. 

(3) If 𝑎(𝑡+1) ∈ 𝑃 , the number of occurrences of 𝑐1  is one more than the number of 

occurrences of 𝑐2 between 𝑎(𝑡) and 𝑎(𝑡+1). 

(4) If 𝑎(𝑡+1) ∈ 𝐵 , the number of occurrences of 𝑐1  is equal to the number of 

occurrences of 𝑐2 between 𝑎(𝑡) and 𝑎(𝑡+1). 

Let the number of occurrences of 𝑐2  between 𝑎(𝑡)  and 𝑎(𝑡+1)  be 𝑘 (𝑘 ≥ 0) . By 

Lemma 1, we can determine the circling behaviors between two successive states 𝑎(𝑡) 

and 𝑎(𝑡+1) as outlined in the following lemma. 

LEMMA 2. Let 𝑘 be a nonnegative integer and 𝑟 be a velocity ratio 𝑟 = 𝑣1/𝑣2, where 

𝑟 > 1. The behaviors between two successive states 𝑎(𝑡) and 𝑎(𝑡+1) are: 

(1) If 𝑎(𝑡+1) ∈ 𝑃, we have 𝑎(𝑡) 𝑐1𝑐2…𝑐1𝑐2⏟      
𝑘

𝑐1𝑎
(𝑡+1), where 𝑘 ≤ ⌈

𝑚−1−𝑟

𝑚(𝑟−1)
⌉ + 1; 

(2) If 𝑎(𝑡+1) ∈ 𝐵, we have 𝑎(𝑡) 𝑐1𝑐2…𝑐1𝑐2⏟      
𝑘

𝑎(𝑡+1), where 𝑘 ≤ 1, 
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where 𝑐1𝑐2…𝑐1𝑐2⏟      
𝑘

 denotes that the circling behavior pair 𝑐1𝑐2 iterate 𝑘 times. 

  In (1) of Lemma 2, ⌈α⌉  represents the rounded-up integer of α . For example, if 

α =0.2, we get ⌈α⌉ =1. 𝑘  is the number of items completed by the second worker 

between two successive states 𝑎(𝑡) and 𝑎(𝑡+1). 𝑘 can range from 0 to ⌈
𝑚−1−𝑟

𝑚(𝑟−1)
⌉ + 1. To 

understand the relationship between k, m, and r, let α =
𝑚−1−𝑟

𝑚(𝑟−1)
. We have 

𝜕𝛼

𝜕𝑚
=

𝑟+1

(𝑟−1)𝑚2. 

Recall that 𝑚 ≥ 3 and 𝑟 = 𝑣1/𝑣2 ≥ 1, so 
∂α

∂𝑚
> 0 and α increases in m. We analyze 

the case of 𝑚 ≫ 𝑟  as follow. We have α →
1

(𝑟−1)
 . When 𝑟 ≥ 2 , ⌈α⌉ = 1  and 𝑘 =

0 𝑜𝑟 1 𝑜𝑟 2 . When 𝑟 < 2 , ⌈α⌉ = 𝑘∗ > 1 , where 𝑘∗  is an integer and 𝑘 =

0 or 1 or,… , 𝑘∗ + 1. Theoretically, if 𝑟 = 1, k can be +∞, which means that 𝑎(𝑡+1) ∈ 𝑃 

will never occur. This is the case of two workers having the same velocity, meaning 

that neither worker will ever pass (or be passed by) the other worker. The absence of 

passing eliminates the waste of waiting (see Rule for Passing) and results in high 

throughputs. This is the reason why managers, in practice, prefer to use workers with 

similar velocities to construct a rotating seru. Example 2 in Section A.2 of the online 

Appendix illustrates Lemmas 1 and 2. 

Examples 1 and 2 illustrate that when worker velocities are fixed, which is typically 

the case in practice and not easy to change in a short period, adjusting the work content 

on stations can result in higher throughput. This observation aligns with the cases and 

literature (Bartholdi and Eisenstein, 1996; Sekine, 2018) discussed in Section 1. We 

summarize this observation in the following remark: 

Remark: For constant velocity and nonpreemptive rotating serus, adjusting the work 

content on stations can yield the highest throughput when worker velocities are fixed. 

In the following sections, we will apply this concept to find the highest throughput. 

Theorem 1 and Lemmas 1 and 2 in this section will be used to construct and analyze 

rotating serus with discrete stations in Sections 3 and 4. 

 

3. Three-Station Two-Worker Rotating Serus with Nonpreemptive Discrete Stations 

In this section, the special case of rotating serus with three stations and two workers 

is discussed. The distribution of work content on the three stations are 𝑠1, 𝑠2, and 𝑠3, 

where 𝑠1 + 𝑠2 + 𝑠3 = 1. The velocities of the two workers are 𝑣1 and 𝑣2, where 𝑣1 >

𝑣2. We analyze all scenarios of behaviors occurring in period-n cycles and calculate 

their throughputs. The result will help us in the analysis of the m-station case. We 

define a velocity ratio 𝑟 = 𝑣1/𝑣2 . There are two cases: (1) 𝑟 ≥ 2  and (2) 2 > 𝑟 > 1 . 

The details of the two cases are analyzed as follows. 
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3.1. 𝒓 ≥ 𝟐 

Let 𝑎(𝑡) (𝑡 = 0, 1, …) be an arbitrary element of an orbit O(𝑎(0)), while the function 

𝑓  determines its next state 𝑎(𝑡+1) = 𝑓(𝑎(𝑡)) . We will analyze 𝑓  for 𝑟 ≥ 2  with 

respect to different work content distributions on the three stations and different 

velocity ratios in the following Lemma 3. In short, 𝑎(𝑡) and 𝑎(𝑡+1) are independent 

and dependent variables of function 𝑓, respectively. 𝑠1, 𝑠2, 𝑠3, and 𝑟 are parameters 

of function 𝑓. 

LEMMA 3. The function 𝑎(𝑡+1) = 𝑓(𝑎(𝑡)) for 𝑟 ≥ 2 is given as follows. 

If 𝑎(𝑡) ∈ {𝑝1, 𝑏1},  

𝑎(𝑡+1) =

{
 
 

 
 
𝑝1, 𝑖𝑓 𝑠1 ≥ 1/(𝑟 + 1);                                                                                        
𝑏2, 𝑖𝑓 𝑟𝑠1 < 𝑠2;                                                                                                    

𝑏3, 𝑖𝑓 𝑟𝑠1 ≥ 𝑠2, 𝑟𝑠1 + (𝑟 − 1)𝑠2 < 𝑠3, ;                                                          

𝑝2, 𝑖𝑓 𝑟𝑠1 ≥ 𝑠2, 𝑟𝑠1 + (𝑟 − 1)𝑠2 ≥ 𝑠3, 𝑠1 < 1/(𝑟 + 1), 𝑠3 ≤ (𝑟 − 1)/𝑟;
𝑝3, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.                                                                                                    

 

If 𝑎(𝑡) ∈ {𝑝2, 𝑏2},  

𝑎(𝑡+1) =

{
 
 

 
 
𝑝2, 𝑖𝑓 𝑠2 ≥ 1/(𝑟 + 1);                                                                                       
𝑏3, 𝑖𝑓 𝑟𝑠2 < 𝑠3;                                                                                                   

𝑏1, 𝑖𝑓 𝑟𝑠2 ≥ 𝑠3, 𝑟𝑠2 + (𝑟 − 1)𝑠3 < 𝑠1;                                                           

𝑝3, 𝑖𝑓 𝑟𝑠2 ≥ 𝑠3, 𝑟𝑠2 + (𝑟 − 1)𝑠3 ≥ 𝑠1, 𝑠2 < 1/(𝑟 + 1), 𝑠1 ≤ (𝑟 − 1)/𝑟;
𝑝1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.                                                                                                    

 

If 𝑎(𝑡) ∈ {𝑝3, 𝑏3},  

𝑎(𝑡+1) =

{
 
 

 
 
𝑝3, 𝑖𝑓 𝑠3 ≥ 1/(𝑟 + 1);                                                                                       
𝑏1, 𝑖𝑓 𝑟𝑠3 < 𝑠1;                                                                                                    

𝑏2, 𝑖𝑓 𝑟𝑠3 ≥ 𝑠1, 𝑟𝑠3 + (𝑟 − 1)𝑠1 < 𝑠2;                                                           

𝑝1, 𝑖𝑓 𝑟𝑠3 ≥ 𝑠1, 𝑟𝑠3 + (𝑟 − 1)𝑠1 ≥ 𝑠2, 𝑠3 < 1/(𝑟 + 1), 𝑠2 ≤ (𝑟 − 1)/𝑟;
𝑝2, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.                                                                                                    

 

By Lemma 3, we have 𝑎(𝑡+1) = 𝑓(𝑎(𝑡)) for any input of 𝑎(𝑡). By Lemma 2, we have 

a circling behavior path of function 𝑓  between 𝑎(𝑡)  and 𝑎(𝑡+1) . For example, if 

𝑎(𝑡+1) ∈ 𝑃, we have 𝑎(𝑡) 𝑐1𝑐2…𝑐1𝑐2⏟      
𝑘

𝑐1𝑎
(𝑡+1). According to Theorem 1, there is a unique 

period-n cycle 𝑎(𝑡) = 𝑓𝑛(𝑎(𝑡)). (See Figure A.4 (a) and (b) of Example 1 for a period-1 

cycle.) Unfortunately, Lemmas 2 and 3 do not tell us how to find the unique period-n 

cycle 𝑎(𝑡) = 𝑓𝑛(𝑎(𝑡))  (as suggested by Theorem 1) for a three-station two-worker 

rotating seru with a specific work content distribution (𝑠1, 𝑠2, 𝑠3)  and given initial 

worker positions (𝑥1, 𝑥2). We next discuss how to find the unique period-n cycle 𝑎(𝑡) =

𝑓𝑛(𝑎(𝑡)), and its behavior paths and throughputs. The results are in Lemma 4. 

Recall that the function 𝑎(𝑡+1) = 𝑓(𝑎(𝑡))  has two variables 𝑎(𝑡)  and 𝑎(𝑡+1) , and 

four parameters 𝑠1 , 𝑠2 , 𝑠3 , and 𝑟 . Lemma 3 and Example 1 show that different 

parameter values generate different 𝑎(𝑡+1) for the same input of 𝑎(𝑡). To illustrate all 

possible values of the four parameters, we use Figure 4. 
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In Figure 4, the horizontal and vertical axes, both ranging from 0 to 1, correspond to 

𝑠1  and 𝑠2 , respectively. The triangle region describes all feasible work content 

distributions (𝑠1, 𝑠2, 𝑠3). That is, a point (𝑠1, 𝑠2) in the region represents a distribution 

of work content on the stations, 𝑠1, 𝑠2, and 𝑠3 = 1 − (𝑠1 + 𝑠2). For example, the point 

(0.3, 0.4) means a work content distribution of (0.3, 0.4, 0.3). The work content region 

of the triangle is 𝑠2 < 1 − 𝑠1. The three vertexes correspond to (0, 0, 1), (1, 0, 0), and (0, 

1, 0), respectively. 
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(a) 𝑟 > 2                           (b) 𝑟 = 2 

Figure 4. The work content regions for 𝑟 ≥ 2. 

Besides (𝑠1, 𝑠2, 𝑠3), the value of the velocity ratio 𝑟 = 𝑣1/𝑣2 is the fourth necessary 

parameter to be used to finalize the behavior path of 𝑎(𝑡) = 𝑓𝑛(𝑎(𝑡))  for given 

arbitrary initial positions of two workers 𝑥1 and 𝑥2. The detailed process is as follows. 

As in Example 1 in Figure A.4, with specific (𝑠1, 𝑠2, 𝑠3), 𝑥1, 𝑥2, and 𝑟 = 𝑣1/𝑣2, we can 

identify the initial state 𝑎(0). With Lemma 3, we find 𝑎(1) = 𝑓(𝑎(0)). With Lemmas 1 

and 2, we obtain the behavior path 𝑎(0) 𝑐1𝑐2…𝑐1𝑐2⏟      
𝑘

𝑐1𝑎
(1)  or 𝑎(0) 𝑐1𝑐2…𝑐1𝑐2⏟      

𝑘

𝑎(1) 

between 𝑎(0) and 𝑎(1). This process continues for 𝑎(2), 𝑎(3), and so on. According to 

Theorem 1, we will finally find a period-n cycle 𝑎(𝑡) = 𝑓𝑛(𝑎(𝑡)) that holds a specific 

behavior path (see details in the online proof of Theorem 1). The result is summarized 

in the following Lemma 4. 

In Lemma 4, for three-station two-worker rotating serus with 𝑟 ≥ 2, there are three 

different period-1 cycles corresponding to seven (six) different parameter values, 

which can be depicted as seven (six) regions in Figure 4. Three lines 𝑠1 = 1/(𝑟 + 1), 

𝑠2 = 1/(𝑟 + 1) , and 𝑠1 + 𝑠2 = 𝑟/(𝑟 + 1) , partition the triangle into seven and six 

mutually exclusive regions for 𝑟 > 2 and 𝑟 = 2, respectively. Each region is a specific 

combination of four parameters 𝑠1, 𝑠2, 𝑠3, and 𝑟. For example, the domains of the 

four parameters in region 7 of Figure 4(a) are 𝑠1 > 1/(𝑟 + 1), 𝑠2 > 1/(𝑟 + 1), 𝑠3 < 1 −
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2/(𝑟 + 1), and (𝑟 + 1) > 𝑚𝑎𝑥{1/𝑠1, 1/𝑠2, 2/(𝑠1 + 𝑠2)}. For Figure 4(b), 𝑟 decreases to 

2, so 𝑙1 and 𝑙2 move right and up, respectively. Three lines intersect at the same point, 

resulting in the disappearance of region 7. For convenience, we define the three cycles 

with their behavior paths as 𝜃1 = 𝑝1𝑐1𝑝1 , 𝜃2 = 𝑝2𝑐1𝑝2 , and 𝜃3 = 𝑝3𝑐1𝑝3 ; and their 

corresponding three throughputs as 𝜏1 = 𝑣2/𝑠1,  𝜏2 = 𝑣2/𝑠2, and 𝜏3 = 𝑣2/𝑠3. 

LEMMA 4. If 𝑟 ≥ 2, a two-worker three-station rotating seru has period-1 cycles and 

its throughputs are as follows. 

Region 𝑖: The cycle is 𝜃𝑖, and its throughput is 𝜏𝑖, 𝑖 = 1,… ,3. 

Region 4: If 𝑎(0) ∈ {𝑝1, 𝑝3, 𝑏1, 𝑏3}, the cycle is 𝜃1, and the throughput is 𝜏1. If 𝑎(0) ∈

{𝑝2, 𝑏2}, the cycle is 𝜃2, and the throughput is 𝜏2. 

Region 5: If 𝑎(0) ∈ {𝑝1, 𝑝2, 𝑏1, 𝑏2}, the cycle is 𝜃2, and the throughput is 𝜏2. If 𝑎(0) ∈

{𝑝3, 𝑏3}, the cycle is 𝜃3, and the throughput is 𝜏3. 

Region 6: If 𝑎(0) ∈ {𝑝2, 𝑝3, 𝑏2, 𝑏3}, the cycle is 𝜃3, and the throughput is 𝜏3. If 𝑎(0) ∈

{𝑝1, 𝑏1}, the cycle is 𝜃1, and the throughput is 𝜏1. 

Region 7: If 𝑎(0) ∈ {𝑝1, 𝑏1}, the cycle is 𝜃1, and the throughput is 𝜏1. If 𝑎(0) ∈ {𝑝2, 𝑏2}, 

the cycle is 𝜃2 , and the throughput is 𝜏2 . If 𝑎(0) ∈ {𝑝3, 𝑏3} , the cycle is 𝜃3 , and the 

throughput is 𝜏3. If 𝑟 = 2, region 7 does not exist. 

In the above lemma, region 1 corresponds to more work content on station 1 than 

on stations 2 and 3. Worker 2 cannot finish her/his work on station 1 before worker 1 

completes an item and returns to the start of station 1. The cycle behavior path is 𝜃1 =

𝑝1𝑐1𝑝1  and the generated throughput is 𝜏1 = (𝑠1/𝑣2)
−1 = 𝑣2/𝑠1 . (See details in the 

online Appendix proofs.) Similarly, regions 2 and 3 correspond to more work content 

on stations 2 and 3. Worker 2 cannot finish her/his work on station 2 or 3 before worker 

1 completes an item and returns to the start of station 2 or 3. Regions 4, 5, and 6 

correspond to relatively less work content on stations 3, 1, and 2, respectively. Each of 

these three regions has two feasible cycles that depend on the initial state 𝑎(0), which 

is the result of different initial worker positions 𝑥1 and 𝑥2 (see Example 1). Region 7 

corresponds to relatively equal work content on station 1, station 2, and station 3. There 

are three feasible cycles that depend on the initial state. Example 3 in Section A.2 of the 

online Appendix illustrates Lemmas 3 and 4.  

The throughput of 2.0 in Example 3 is not the maximal throughput this seru can 

achieve. Recall the observation in Section 2 that the work content on the stations can 

be adjusted to achieve maximal throughput. With Lemmas 3 and 4, we are able to 

express this idea in Theorem 2, which provides the conditions for achieving the 

maximal throughput for various initial states. 

THEOREM 2. If 𝑟 ≥ 2, a two-worker three-station rotating seru achieves its maximal 

throughput 𝑣1 + 𝑣2 as follows. 

If 𝑎(0) ∈ {𝑝1, 𝑏1}, the maximal throughput is achieved by either of 
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(1) 𝑠1 =
1

𝑟+1
; or (2) 𝑠2 =

1

𝑟+1
 and 0 < 𝑠1 <

1

𝑟+1
. 

If 𝑎(0) ∈ {𝑝2, 𝑏2}, the maximal throughput is achieved by either of 

 (1) 𝑠2 =
1

𝑟+1
; or (2) 𝑠3 =

1

𝑟+1
 and 0 < 𝑠2 <

1

𝑟+1
. 

If 𝑎(0) ∈ {𝑝3, 𝑏3}, the maximal throughput is achieved by either of 

(1) 𝑠3 =
1

𝑟+1
; or (2) 𝑠1 =

1

𝑟+1
 and 0 < 𝑠3 <

1

𝑟+1
. 

In Example 4 (Section A.2 of the online Appendix), we demonstrate all of the 

possible throughputs that can be achieved within a given work content space, 

including the maximal throughput described in Theorem 2. Specifically, we look at the 

values of (𝑠1, 𝑠2, 𝑠3 = 1 − 𝑠1 − 𝑠2 ) and their impact on the overall performance of the 

rotating seru. 

 

3.2. 𝟐 > 𝒓 > 𝟏 

In the case where 2 > 𝑟 > 1, the cycles and throughputs in regions 1-6 of Figure 4(a) 

are the same as the case where 𝑟 ≥ 2. As the velocity ratio 𝑟 decreases, worker 2 does 

not continue working on a single station. Region 7 becomes a more complex area, 

known as region 𝐷 , where 𝑠1 < 1/(𝑟 + 1)    𝑠2 < 1/(𝑟 + 1) , and 𝑠3 < 1/(𝑟 + 1) , as 

shown in Figure 5(a). In region 𝐷, there is only a small difference in the work content 

at different stations; e.g., (𝑠1, 𝑠2, 𝑠3) = (1/3,1/3,1/3). The workers have opportunities to 

complete more items between two successive states 𝑎(𝑡) and 𝑎(𝑡+1). By (1) of Lemma 

2, between two successive states 𝑎(𝑡) and 𝑎(𝑡+1), the number of items completed by 

the second worker is 𝑘, which can be any number ranging from 0 to ⌈
𝑚−1−𝑟

𝑚(𝑟−1)
⌉ + 1. For 

a three-station seru (𝑚 = 3 ), let 𝑘∗ = ⌈
𝑚−1−𝑟

𝑚(𝑟−1)
⌉ = ⌈

𝟐−𝒓

𝟑(𝒓−𝟏)
⌉ . The dynamics of region 𝐷 

can be characterized by 𝑘∗. 
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(a) Region 𝐷 arises.                (b) 𝑘∗ layers. 

Figure 5. The work-content region 𝐷 is partitioned into 𝑘∗ layers when 2 > 𝑟 > 1. 
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Region 𝐷  is partitioned into 𝑘∗  layers, as shown in Figure 5(b). 𝑇(𝑘)  is a sub 

region defined as 𝑠𝑖 <
𝑘−(𝑘−1)𝑟

𝑟+1
 for 𝑖 = 1, 2. When 𝑘 = 1, 2, … , 𝑘∗ − 1, the 𝑘-th layer is 

denoted as 𝑇(𝑘 + 1) ≤ 𝐷(𝑘) < 𝑇(𝑘). The k*-th layer is the innermost triangle and is 

denoted as 𝐷(𝑘∗) = 𝑇(𝑘∗). As region 𝐷 is the only difference from the case of 𝑟 ≥ 2, 

we study the dynamics of region 𝐷 through the 𝑘∗ layers. There are two cases: 𝑘 =

1,2… , 𝑘∗ − 1 and 𝑘 = 𝑘∗. 

➢ Case 1: 𝒌 = 𝟏, 𝟐… , 𝒌∗ − 𝟏 

  

 
 

D(k*)

D(k*-1)

s1

s2

l1: s2=rs1

l2: s2=1/(1+r)-[1/(r+1)]s1

l3: s2=1-[(r+1)/r]s1

l4: s2=1/r-[(r+1)/r]s1

l5: s2=1-r+rs1

l6: s2=r/(r+1)-[1/(r+1)]s1

l1

l2

l3l4

l5

l6

0  
Figure 6. Layer 𝐷(𝑘∗ − 1). 

As shown in Figure 6, for 𝑘 ≥ 1 or 𝑘∗ ≥ 2, each Layer 𝐷(𝑘)  𝑘 = 1,2, … , 𝑘∗ − 1, is 

partitioned by lines 𝑙1~𝑙6. Recall that each sub region represents a set of work content 

(𝑠1, 𝑠2, 𝑠3) . We analyze the cycles and throughputs for the case 𝑘 = 𝑘∗ − 1  because 

layer 𝐷(𝑘∗ − 1) is partitioned into more sub regions than any other layer; i.e., 𝐷(𝑘∗ −

1) is the most complex and dynamic layer. Analyses for cases of 𝑘 = 1,2,… , 𝑘∗ − 2 

are similar. 

The system function 𝑎(𝑡+1) = 𝑓(𝑎(𝑡)) for 𝐷(𝑘∗ − 1) with respect to different work 

content distributions is given by the following lemma. Let 

𝛷(𝑘) =
𝑘−(𝑘−1)𝑟

𝑟+1
 and Ω(𝑘) =

𝑘(𝑟−1)

𝑟
, where 𝑘 = 1,2, … , 𝑘∗ − 1. 

LEMMA 5. The function 𝑎(𝑡+1) = 𝑓(𝑎(𝑡)) for 𝐷(𝑘), 𝑘 = 𝑘∗ − 1, is given as follows. 

If 𝑎(𝑡) ∈ {𝑝1, 𝑏1} 

𝑎(𝑡+1)

=

{
 
 
 

 
 
 
𝑏2, 𝑖𝑓 𝑟𝑠1 < 𝑠2;                                                                                                                                                                           

𝑏3, 𝑖𝑓 𝑟𝑠1 ≥ 𝑠2, 𝑟𝑠1 + (𝑟 − 1)𝑠2 < 𝑠3;                                                                                                                                    

𝑝2, 𝑖𝑓 𝑟𝑠1 ≥ 𝑠2, 𝑟𝑠1 + (𝑟 − 1)𝑠2 ≥ 𝑠3, 𝑠3 ≤ 𝛺(𝑘) 𝑜𝑟                                                                                                         

    𝑟𝑠1 ≥ 𝑠2, 𝑟𝑠1 + (𝑟 − 1)𝑠2 ≥ 𝑠3, 𝑠3 > 𝛺(𝑘), 𝑠2 > 𝑟𝛺(𝑘), 𝑠1 < 𝛷(𝑘 + 1), 𝑠2 ≥ 𝛷(𝑘 + 1);                             

𝑝3, 𝑖𝑓 𝑟𝑠1 ≥ 𝑠2, 𝑟𝑠1 + (𝑟 − 1)𝑠2 ≥ 𝑠3, 𝑠3 > 𝛺(𝑘), 𝑠2 ≤ 𝑟𝛺(𝑘) 𝑜𝑟                                                                                   

    𝑟𝑠1 ≥ 𝑠2, 𝑟𝑠1 + (𝑟 − 1)𝑠2 ≥ 𝑠3, 𝑠3 > 𝛺(𝑘), 𝑠2 > 𝑟𝛺(𝑘), 𝑠1 < 𝛷(𝑘 + 1), 𝑠2 < 𝛷(𝑘 + 1), 𝑠3 ≥ 𝛷(𝑘 + 1);

𝑝1, 𝑖𝑓 𝑟𝑠1 ≥ 𝑠2, 𝑟𝑠1 + (𝑟 − 1)𝑠2 ≥ 𝑠3, 𝑠3 > 𝛺(𝑘), 𝑠2 > 𝑟𝛺(𝑘), 𝑠1 ≥ 𝛷(𝑘 + 1).                                                         

 

If 𝑎(𝑡) ∈ {𝑝2, 𝑏2} 
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𝑎(𝑡+1)

=

{
 
 
 

 
 
 
𝑏3, 𝑖𝑓 𝑟𝑠2 < 𝑠3;                                                                                                                                                                           

𝑏1, 𝑖𝑓 𝑟𝑠2 ≥ 𝑠3, 𝑟𝑠2 + (𝑟 − 1)𝑠3 < 𝑠1;                                                                                                                                    

𝑝3, 𝑖𝑓 𝑟𝑠2 ≥ 𝑠3, 𝑟𝑠2 + (𝑟 − 1)𝑠3 ≥ 𝑠1, 𝑠1 ≤ 𝛺(𝑘) 𝑜𝑟                                                                                                         

    𝑟𝑠2 ≥ 𝑠3, 𝑟𝑠2 + (𝑟 − 1)𝑠3 ≥ 𝑠1, 𝑠1 > 𝛺(𝑘), 𝑠3 > 𝑟𝛺(𝑘), 𝑠2 < 𝛷(𝑘 + 1), 𝑠3 ≥ 𝛷(𝑘 + 1);                             

𝑝1, 𝑖𝑓 𝑟𝑠2 ≥ 𝑠3, 𝑟𝑠2 + (𝑟 − 1)𝑠3 ≥ 𝑠1, 𝑠1 > 𝛺(𝑘), 𝑠3 ≤ 𝑟𝛺(𝑘) 𝑜𝑟                                                                                  

     𝑟𝑠2 ≥ 𝑠3, 𝑟𝑠2 + (𝑟 − 1)𝑠3 ≥ 𝑠1, 𝑠1 > 𝛺(𝑘), 𝑠3 > 𝑟𝛺(𝑘), 𝑠2 < 𝛷(𝑘 + 1), 𝑠3 < 𝛷(𝑘 + 1), 𝑠1 ≥ 𝛷(𝑘 + 1);

𝑝2, 𝑖𝑓 𝑟𝑠2 ≥ 𝑠3, 𝑟𝑠2 + (𝑟 − 1)𝑠3 ≥ 𝑠1, 𝑠1 > 𝛺(𝑘), 𝑠3 > 𝑟𝛺(𝑘), 𝑠2 ≥ 𝛷(𝑘 + 1).                                                         

 

If 𝑎(𝑡) ∈ {𝑝3, 𝑏3} 

𝑎(𝑡+1)

=

{
 
 
 

 
 
 
𝑏1, 𝑖𝑓 𝑟𝑠3 < 𝑠1;                                                                                                                                                                          

𝑏2, 𝑖𝑓 𝑟𝑠3 ≥ 𝑠1, 𝑟𝑠3 + (𝑟 − 1)𝑠1 < 𝑠2;                                                                                                                                    

𝑝1, 𝑖𝑓 𝑟𝑠3 ≥ 𝑠1, 𝑟𝑠3 + (𝑟 − 1)𝑠1 ≥ 𝑠2, 𝑠2 ≤ 𝛺(𝑘) 𝑜𝑟                                                                                                         

    𝑟𝑠3 ≥ 𝑠1, 𝑟𝑠3 + (𝑟 − 1)𝑠1 ≥ 𝑠2, 𝑠2 > 𝛺(𝑘), 𝑠1 > 𝑟𝛺(𝑘), 𝑠3 < 𝛷(𝑘 + 1), 𝑠1 ≥ 𝛷(𝑘 + 1);                             

𝑝2, 𝑖𝑓 𝑟𝑠3 ≥ 𝑠1, 𝑟𝑠3 + (𝑟 − 1)𝑠1 ≥ 𝑠2, 𝑠2 > 𝛺(𝑘), 𝑠1 ≤ 𝑟𝛺(𝑘) 𝑜𝑟                                                                                   

    𝑟𝑠3 ≥ 𝑠1, 𝑟𝑠3 + (𝑟 − 1)𝑠1 ≥ 𝑠2, 𝑠2 > 𝛺(𝑘), 𝑠1 > 𝑟𝛺(𝑘), 𝑠3 < 𝛷(𝑘 + 1), 𝑠1 < 𝛷(𝑘 + 1), 𝑠2 ≥ 𝛷(𝑘 + 1);

𝑝3, 𝑖𝑓 𝑟𝑠3 ≥ 𝑠1, 𝑟𝑠3 + (𝑟 − 1)𝑠1 ≥ 𝑠2, 𝑠2 > 𝛺(𝑘), 𝑠1 > 𝑟𝛺(𝑘), 𝑠3 ≥ 𝛷(𝑘 + 1).                                                           

 

Lemma 5 is similar to Lemma 3 for the 𝑟 ≥ 2 case. Based on Theorem 1 and using 

results of the above lemma, for the combination of a given work content distribution 

(i.e., 𝑠1 , 𝑠2 , and 𝑠3 ) and a given initial state 𝑎(0) , a unique period-n cycle 𝑎(𝑡) =

𝑓𝑛(𝑎(𝑡))  can be obtained. As in the case of 𝑟 ≥ 2 , the behavior path between two 

consecutive states 𝑎(𝑡)  and 𝑎(𝑡) , and the throughput of a period-n cycle 𝑎(𝑡) =

𝑓𝑛(𝑎(𝑡)) can be found in the following Lemma 6, which is similar to Lemma 4 of the 

𝑟 ≥ 2 case. All analyses are similar to Lemmas 3 and 4. We keep our descriptions here 

as simple as possible. For details, see the proofs of Lemmas 5 and 6 in the Appendix 

and the analyses of Lemmas 3 and 4.  

1

10

4

7

2

11

5

9

12

6

3

8

l1: s2=rs1

l2: s2=1/(1+r)-[1/(r+1)]s1

l3: s2=1-[(r+1)/r]s1

l4: s1=[(k-(k-1)r]/(r+1)

l5: s2=[(k-(k-1)r]/(r+1)

l6: s2=[kr-(k-1)]/(r+1)-s1

l7: s1=(k+1-kr)/(r+1)

l8: s2=(k+1-kr)/(r+1)

l9: s2=[(k+1)r-k]/(r+1)-s1

l10: s2=[k-(k-1)r]/r-s1

l11: s2=k+1-kr-s1

l12: s1=[k(r-1)]/r

l13: s1=k(r-1)

l14: s2=[k(r-1)]/r

l15: s2=k(r-1)

  

  

 
 

l1

l2

l3

l10l11l12

l13

l14

l15
l7

l8

l9

l4
l5

l6

s1

s2

0

 

Figure 7. 𝐷(𝑘∗ − 1) is partitioned into 12 sub regions. 

There are twelve work content distributions (sub regions) corresponding to nine 

cycles (behavior paths) and throughputs (see Figure 7 for details). For convenience, we 
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define the nine cycles and throughputs in Table 1.  

Table 1. Cycles (Behavior Paths) and Throughputs of 𝑘∗ − 1 

Cycles (Behavior Paths) Throughputs 

𝜃1(𝑘) = 𝑝1 𝑐1𝑐2 …𝑐1𝑐2⏟      
𝑘−1

𝑐1𝑝2 𝑐1𝑐2…𝑐1𝑐2⏟      
𝑘

𝑐1𝑝1  𝜏1(𝑘) =
4𝑘

2𝑘−𝑠3
× 𝑣2  

𝜃2(𝑘) = 𝑝2 𝑐1𝑐2 …𝑐1𝑐2⏟      
𝑘−1

𝑐1𝑝3 𝑐1𝑐2…𝑐1𝑐2⏟      
𝑘

𝑐1𝑝2  𝜏2(𝑘) =
4𝑘

2𝑘−𝑠1
× 𝑣2  

𝜃3(𝑘) = 𝑝1 𝑐1𝑐2…𝑐1𝑐2⏟      
𝑘−1

𝑐1𝑝3 𝑐1𝑐2…𝑐1𝑐2⏟      
𝑘

𝑐1𝑝1  𝜏3(𝑘) =
4𝑘

2𝑘−𝑠2
× 𝑣2  

𝜃4(𝑘) = 𝑝1𝑏2 𝑐1𝑐2…𝑐1𝑐2⏟      
𝑘

𝑐1𝑝1  𝜏4(𝑘) =
2𝑘+1

𝑘+𝑠2/𝑟
× 𝑣2  

𝜃5(𝑘) = 𝑝2𝑏3 𝑐1𝑐2…𝑐1𝑐2⏟      
𝑘

𝑐1𝑝2  𝜏5(𝑘) =
2𝑘+1

𝑘+𝑠3/𝑟
× 𝑣2  

𝜃6(𝑘) = 𝑝3𝑐1𝑐2𝑏1 𝑐1𝑐2…𝑐1𝑐2⏟      
𝑘−1

𝑐1𝑝3  𝜏6(𝑘) =
2𝑘+1

𝑘+𝑠1/𝑟
× 𝑣2  

𝜃7(𝑘) = 𝑝1 𝑐1𝑐2…𝑐1𝑐2⏟      
𝑘

𝑐1𝑝1  𝜏7(𝑘) =
2𝑘+1

𝑘+𝑠1
× 𝑣2  

𝜃8(𝑘) = 𝑝2 𝑐1𝑐2…𝑐1𝑐2⏟      
𝑘

𝑐1𝑝2  𝜏8(𝑘) =
2𝑘+1

𝑘+𝑠2
× 𝑣2  

𝜃9(𝑘) = 𝑝3 𝑐1𝑐2…𝑐1𝑐2⏟      
𝑘

𝑐1𝑝3  𝜏9(𝑘) =
2𝑘+1

𝑘+𝑠3
× 𝑣2  

LEMMA 6. If 2 > 𝑟 > 1, for 𝐷(𝑘∗ − 1), a two-worker three-station rotating seru has 

distinct period-n cycles and throughputs in each of the following twelve regions. 

Region 𝑘𝑖: The cycle is 𝜃𝑖(𝑘)  and its throughput is 𝜏𝑖(𝑘), 𝑖 = 1,… ,9. 

Region 𝑘10: If 𝑎
(0) ∈ {𝑝1, 𝑝3, 𝑏1, 𝑏3}  the cycle is 𝜃7(𝑘) with throughput of 𝜏7(𝑘); if 

𝑎(0) ∈ {𝑝2, 𝑏2}  the cycle is 𝜃8(𝑘) with throughput of 𝜏8(𝑘). 

Region 𝑘11: If 𝑎
(0) ∈ {𝑝1, 𝑝2, 𝑏1, 𝑏2}  the cycle is 𝜃8(𝑘) with throughput of 𝜏8(𝑘); if 

𝑎(0) ∈ {𝑝3, 𝑏3}  the cycle is 𝜃9(𝑘) with throughput of 𝜏9(𝑘). 

Region 𝑘12: If 𝑎
(0) ∈ {𝑝2, 𝑝3, 𝑏2, 𝑏3}  the cycle is 𝜃9(𝑘) with throughput of 𝜏9(𝑘); if 

𝑎(0) ∈ {𝑝1, 𝑏1}  the cycle is 𝜃7(𝑘) with throughput of 𝜏7(𝑘). 

➢ Case 2: 𝒌 = 𝒌∗ 

For layer 𝐷(𝑘∗) , there are a maximum of 15 sub regions based on the different 

values of velocity ratios. Besides cycles 𝜃1(𝑘)- 𝜃9(𝑘), there are two more cycles and 

throughputs as follows. 

𝜃0(𝑘
∗) = 𝑝1 𝑐1𝑐2…𝑐1𝑐2⏟      

𝑘∗−1

𝑐1𝑝2 𝑐1𝑐2…𝑐1𝑐2⏟      
𝑘∗−1

𝑐1𝑝3 𝑐1𝑐2…𝑐1𝑐2⏟      
𝑘∗

𝑐1𝑝1  𝜏0(𝑘
∗) =

6𝑘∗−1

3𝑘∗−1
× 𝑣2; 

𝜃0
′(𝑘∗) = 𝑝1 𝑐1𝑐2…𝑐1𝑐2⏟      

𝑘∗−1

𝑐1𝑝3 𝑐1𝑐2…𝑐1𝑐2⏟      
𝑘∗

𝑐1𝑝2 𝑐1𝑐2…𝑐1𝑐2⏟      
𝑘∗

𝑐1𝑝1  𝜏0
′ (𝑘∗) =

6𝑘∗+1

3𝑘∗
× 𝑣2. 

In the following lemma, we show cycles and throughputs of each sub region. For 

multiple figures that illustrate details, see the e-companion online file of the Appendix. 

LEMMA 7. If 2 > 𝑟 > 1 , for 𝐷(𝑘∗) , a two-worker three-station rotating seru has 
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distinct period-n cycles and throughputs in each of the following fifteen regions. 

Region 𝑘0′
∗ : The cycle is 𝜃0

′(𝑘∗), and its throughput is 𝜏0
′ (𝑘∗). 

Region 𝑘𝑖
∗: The cycle is 𝜃𝑖(𝑘

∗), and its throughput is 𝜏𝑖(𝑘
∗), 𝑖 = 0,… ,9. 

Region 𝑘10
∗ : The cycle is 𝜃7(𝑘

∗) or θ8(k
∗), and its throughput is 𝜏7(𝑘

∗) or 𝜏8(𝑘
∗). 

Region 𝑘11
∗ : The cycle is 𝜃8(𝑘

∗) or θ9(k
∗), and its throughput is 𝜏8(𝑘

∗) or 𝜏9(𝑘
∗). 

Region 𝑘12
∗ : The cycle is 𝜃7(𝑘

∗) or θ9(k
∗), and its throughput is 𝜏7(𝑘

∗) or 𝜏9(𝑘
∗). 

Region 𝑘13
∗  : The cycle is 𝜃7(𝑘

∗) , 𝜃8(𝑘
∗)  or 𝜃9(𝑘

∗) , and its throughput is 𝜏7(𝑘
∗) , 

𝜏8(𝑘
∗) or 𝜏9(𝑘

∗). 

Example 5 in the online Appendix illustrates the case of 2 > 𝑟 > 1. Note that the 

maximal throughput for Example 5 is 𝑣1 + 𝑣2 = 3.8 . The current work content 

(𝑠1, 𝑠2, 𝑠3) on each station in Example 5 does not realize the highest throughput this seru 

can achieve. Recall the remark in Section 2 that we can adjust the work content on the 

stations to generate the maximal throughput. We materialize this remark as Theorem 

3, in which the conditions for achieving the maximal throughput for different initial 

states are given. We provide the details for the case 𝑘 = 𝑘∗ − 1 because layer 𝐷(𝑘∗ −

1)  is the most complex and dynamic layer. Let δ1 =
𝑘+1−𝑘𝑟

𝑟+1
 , δ2 = 𝑘(𝑟 − 1) , δ3 =

𝑟(𝑘+1−𝑘𝑟)

𝑟+1
, and δ4 =

(2𝑘+1)(𝑟−1)

𝑟+1
. 

THEOREM 3. If 2 > 𝑟 > 1 , a two-worker three-station rotating seru achieves its 

maximal throughput 𝑣1 + 𝑣2 as follows. 

 If 𝑎(0) ∈ {𝑝1, 𝑏1}, the maximal throughput is achieved by either of 

(1)𝑠1 = 𝛿1 and 𝛿2 ≤ 𝑠2 ≤ 𝛿3; (2)s2 = 𝛿1 and 𝛿2 ≤ 𝑠1 ≤ 𝛿1; or (3)𝑠3 = 𝛿1 and 𝛿4 ≤ 𝑠1 ≤ 𝛿1. 

 If 𝑎(0) ∈ {𝑝2, 𝑏2}, the maximal throughput is achieved by either of 

(1)𝑠2 = 𝛿1 and 𝛿2 ≤ 𝑠3 ≤ 𝛿3; (2)𝑠3 = 𝛿1 and 𝛿2 ≤ 𝑠2 ≤ 𝛿1; or (3)𝑠1 = 𝛿1 and 𝛿4 ≤ 𝑠2 ≤ 𝛿1. 

 If 𝑎(0) ∈ {𝑝3, 𝑏3}, the maximal throughput is achieved by either of 

(1)𝑠3 = 𝛿1 and 𝛿2 ≤ 𝑠1 ≤ 𝛿3; (2)𝑠1 = 𝛿1 and 𝛿2 ≤ 𝑠3 ≤ 𝛿1; or (3)𝑠2 = 𝛿1 and 𝛿4 ≤ 𝑠1 ≤ 𝛿1. 

  Example 6 in the online Appendix illustrates Theorem 3. Note that the maximal 

throughput 𝑣1 + 𝑣2 = 3.8 is achieved in Example 6. 

 

4. m-Station Two-worker Rotating Serus with Nonpreemptive Discrete Stations 

The complexity of analyzing a rotating seru with m discrete stations and two workers 

increases significantly as the number of stations increases. However, the case of a 

three-station seru can be generalized to a rotating seru with m stations. 

Passing is an inevitable aspect of rotating serus that use a rabbit-chasing mechanism. 

It is desirable for passing to always occur at a fixed station, as this allows for the 

implementation of appropriate measures to improve the performance of the seru. 

Workers should be trained to execute passing efficiently, as this reduces interference 

between workers and substantially improves productivity. 
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The designs for passing stations vary depending on the product being produced. 

However, a general principle is to allow faster and slower workers to work on their 

own items simultaneously at the passing station. For example, in a Japanese 

automobile component assembly factory in Kyushu (Matsuo, 2013), the assembly 

process has five discrete stations with the fifth station specifically designed to facilitate 

a high-velocity worker passing a low-velocity worker. The fifth station has additional 

space and tools to accommodate more than one worker. Another example is a factory 

of Itoki Corporation that uses a rotating seru to assemble components for office and 

healthcare facilities; the first station is the passing station, where workers can work 

simultaneously when a faster worker is passing a slower worker (Kakigi 2003). 

For a large m-station rotating seru, sufficient conditions have been identified that 

allow all passings to occur on a single fixed station. A fixed passing station with 

specific work content can help a large system achieve its maximal throughput. 

Let 𝑟 be the velocity ratio of two workers and 𝑠𝑖  (𝑖 = 1,2, … ,𝑚) be the fixed station 

where passings occur. There is a cycle, denoted as 𝑝𝑖 𝑐1𝑐2…𝑐1𝑐2⏟      
𝑘

𝑐1𝑝𝑖  where 𝑘 is the 

occurrence of 𝑐2 during the time elapsed between two successive states. There are two 

exclusive cases: 𝑟 ≥ 2 and 2 > 𝑟 > 1. 

 

4.1. 𝒓 ≥ 𝟐 

LEMMA 8. For a large m-station rotating seru, where 𝑟 ≥ 2 , if the cycle is  

𝑝𝑖 𝑐1𝑐2…𝑐1𝑐2⏟      
𝑘

𝑐1𝑝𝑖 , 𝑖 = 1,2,… ,𝑚, then 𝑘 = 0. 

The above lemma is an application of Lemma 2. A sufficient condition for passings 

to occur at a fixed station is as follows. 

THEOREM 4. For a large m-station rotating seru, where 𝑟 ≥ 2, with an initial state of 

𝑝𝑖  or 𝑏𝑖 , if 𝑠𝑖 ≥ 1/(𝑟 + 1) , then passings will only occur at station 𝑖  (𝑖 = 1,2,… ,𝑚 ); 

that is, we have the cycle 𝑝𝑖𝑐1𝑝𝑖 . When 𝑠𝑖 = 1/(𝑟 + 1) , the maximal throughput is 

obtained, that is (𝑟 + 1) × 𝑣2 = 𝑣1 + 𝑣2. 

  Theorem 4 is a generalized extension of Theorem 2. Example 3 can also be used to 

explain Theorem 4. The next case, where 2 > 𝑟 > 1, is more complicated. 

 

4.2. 𝟐 > 𝒓 > 𝟏  

LEMMA 9. For a large m-station rotating seru, where 2 > 𝑟 > 1 , if the cycle is 

𝑝𝑖 𝑐1𝑐2…𝑐1𝑐2⏟      
𝑘

𝑐1𝑝𝑖, 𝑖 = 1,2,… ,𝑚, 𝑘 has the following two cases: 

(A) If 𝑠𝑖 ≥ 1/(𝑟 + 1), then 𝑘 = 0; 

(B) If 𝑠𝑖 < 1/(𝑟 + 1), then 1 ≤ 𝑘 ≤ 𝑘∗, where 𝑘∗ = ⌈
𝒎−𝟏−𝒓

𝒎(𝒓−𝟏)
⌉, a rounded-up integer. 

  Example 7 in the online Appendix illustrates Lemma 9. 
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Recalling again that 𝑘∗ is related to the number of completed items by the slower 

worker between two states 𝑎(𝑡)  and 𝑎(𝑡+1) , using the above lemma, a sufficient 

condition for passing to occur at a fixed station is as follows. 

THEOREM 5. For a large m-station rotating seru, where 2 > 𝑟 > 1, with an initial state 

of 𝑝𝑖 or 𝑏𝑖, if the following conditions are satisfied, then passings will only occur at 

station 𝑖, 𝑖 = 1,2, … ,𝑚; that is, we have the cycle 𝑝𝑖 𝑐1𝑐2…𝑐1𝑐2⏟      
𝑘

𝑐1𝑝𝑖  𝑘 = 0,1,2,… , 𝑘
∗, 

where 𝑘∗ = ⌈
𝑚−1−𝑟

𝑚(𝑟−1)
⌉. There are two exclusive cases: 

(A)  𝑘 = 0.  𝑠𝑖 ≥ 1/(𝑟 + 1)                                                     (1) 

When 𝑠𝑖 = 1/(𝑟 + 1), the maximal throughput is obtained: (𝑟 + 1) × 𝑣2 = 𝑣1 + 𝑣2. 

(B) 𝑘 = 1,2,… , 𝑘∗. 

{
𝑘 + 𝑟 − 𝑘𝑟 − 𝑟𝑠𝑗 > 𝑟𝑠𝑖 + (𝑟 − 1)∑ 𝑠𝑜

𝑗−1
𝑜=𝑖+1 ≥ 𝑠𝑗,                                  𝑗 = 𝑖 + 1,… ,𝑚;

𝑘 + 𝑟 − 𝑘𝑟 − 𝑟𝑠𝑗 > 𝑟𝑠𝑖 + (𝑟 − 1)∑ 𝑠𝑜
𝑚
𝑜=𝑖+1 + (𝑟 − 1)∑ 𝑠𝑜

𝑗−1
𝑜=1 ≥ 𝑠𝑗, 𝑗 = 1,… , 𝑖 − 1.

 (2) 

{
𝑘 + 1 − 𝑘𝑟 ≤ (𝑟 + 1)𝑠𝑖 < 𝑘 + 𝑟 − 𝑘𝑟,
(𝑟 + 1)𝑠𝑗 < 𝑘 + 𝑟 − 𝑘𝑟,                          𝑗 = 1,… ,𝑚, 𝑗 ≠ 𝑖.

                        (3) 

When 𝑠𝑖 =
𝑘+1−𝑘𝑟

𝑟+1
 , the maximal throughput is obtained: (𝑟 + 1) × 𝑣2 = 𝑣1 + 𝑣2. 

  Example 8 in the online Appendix illustrates Theorem 5. 

The managerial benefits from Theorems 4 and 5 are clear. Based on the different 

velocity ratios, 𝑟, a manager can adjust the work content distributed on stations to 

obtain the maximal throughput 𝑣1 + 𝑣2. With an initial state of 𝑝𝑖 or 𝑏𝑖, for the case 

of 𝑟 ≥ 2, if 𝑠𝑖 = 1/(𝑟 + 1), or for the case of 2 > 𝑟 > 1  if 𝑠𝑖 = 1/(𝑟 + 1) or 𝑠𝑖 = (𝑘 +

1 − 𝑘𝑟)/(𝑟 + 1), the faster worker passes the slower worker only on station 𝑖, and the 

maximal throughput is achieved. 

Theorems 4 and 5 provide guidelines for designing a rotating seru with discrete 

stations in order to maximize throughput. In practice, for example, the managers at 

the Japanese automobile component assembly factory mentioned earlier use their 

experience and trial-and-error methods to design passing stations and distribute the 

work content among the stations. The results of Theorems 4 and 5 can assist managers 

in obtaining the optimal design for a rotating seru. To further illustrate the practical 

applications of our research, we provide two concrete examples of order picking and 

production lines. 

Recall the order picking and production applications of rotating serus introduced in 

Section 1. Theorems 4 and 5 can be used to designate a passing station based on the 

workers’ velocities in order to achieve the highest throughput. For example, consider 

two workers who have velocities of 2 and 1 (𝑟 = 2), respectively. For an order picking 

rotating seru whose task is to pick 9 different items, following Theorem 4, managers 

could create 7 stations. Each station would contain one bin (shelf). The final station 
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would stock 3 items and each of the other six stations would stock a single item. Thus, 

the work content (or the density, in the language of order picking literature; see Batt 

and Gallino (2019)) of the final station would be 3, and the work content of each of the 

other six stations would be 1. Then, the faster worker would always pass the slower 

worker at the final station, and the maximal throughput of 3 could be achieved. 

Let us now consider a real-life production case, the product introduced in Chapter 4 

of Cachon and Terwiesch (2012), a kick scooter produced by Novacruz. (See Cachon 

and Terwiesch’s book for details.) The assembly process of this scooter requires 26 

tasks, each of which has its own assembly time. A station can contain one or more tasks. 

If we use a rotating seru with two workers (𝑟 = 2) to assemble this product, the possible 

number of stations for the rotating seru can range from 1 to 26. This means that the 

work content of each station can be adjusted based on the number of tasks it contains. 

The work content of this product is 1,890 seconds. By applying Theorem 4, we can 

design the first station to contain tasks 1-10 with a work content of 623 seconds. As a 

result, the faster worker will always pass the slower worker at the first station. 

Additionally, the first task (preparing the cable) can be specially designed to allow the 

faster worker to pass the slower worker smoothly. 

 

5. m-Station n-Worker Rotating Serus with Nonpreemptive Discrete Stations 

  The problem discussed in Section 4 is a two-dimensional (two workers) problem. In 

Section 4, we saw that the complexity of analyzing a rotating seru with m discrete stations 

and two workers increases rapidly with the number of stations. In this section, we 

show that the analysis of a higher dimensional problem—a rotating seru with m discrete 

stations and n (𝑛 ≥ 3) workers—is almost impossible because such a system tends to 

be chaotic. The existence of chaos in a dynamical system implies that no one can 

precisely predict the future result of the system function 𝑓 (Zhang, 2006). One way to 

prove the chaos of a system is to show that the system function has periodic orbits of 

every period. For an m-station n-worker rotating seru, this implies that the seru has 

period-1, period-2, …, period-m orbits. An amazing and important theorem given by 

Li and Yorke (1975) is that if 𝑓  has a periodic orbit of period three, then 𝑓  has 

periodic orbits of every period. Following the Li-Yorke Theorem, Example 9 in the 

online Appendix illustrates a period-3 orbit, which means that higher dimensional 

rotating serus (e.g., three workers and four stations) tend to be chaotic. 

Since it is almost impossible to predict a chaotic system, we hereafter conduct 

simulated experiments to identify properties of higher dimensional rotating serus. 

5.1. Simulated experiments 

Let 𝑣𝑗  (𝑗 = 1,2,… , 𝑛 ) denote the worker velocity of worker 𝑗 , where 𝑣1 > 𝑣2 >

⋯ > 𝑣𝑛 . Define δ = 𝑣1/𝑣𝑛  as the velocity ratio of workers. We have 𝑣𝑗 = (1 −
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δ−1

δ(𝑛−1)
× (𝑗 − 1)) × 𝑣1 , for 𝑗 = 1,2,… , 𝑛 . We assume that faster workers have higher 

priority. That is, when multiple workers are blocked at the start of a certain station at 

the same time, they are allowed to pass that station based on their priorities, from 

highest to lowest. We evaluate the average throughput of workers under the impacts 

of velocity ratios, worker numbers, station numbers, and varied work velocities. In 

experiments (1)-(3), after running 500 warm-up items, 2000 items are run to compute 

the average throughput of workers. 

Experiment (1): Impacts of velocity ratios and worker numbers 

In this experiment, three factors that impact throughput are considered: velocity 

ratio δ, worker number 𝑛, and station number 𝑚. Figure 8(a) illustrates the effects of 

changes in the number of workers and the velocity ratio. We set the average velocity 

of all workers as �̅� = 0.5. We vary the velocity ratio δ from 1.2 to 2.8 (as shown by 

the various curves in Figure 8(a)). The change in the number of workers is represented 

on the horizontal axis, with values ranging from 3 to 9 (𝑛 = 3, . . . ,9). 

The vertical axis in Figure 8(a) represents the grand average throughput, which is 

defined as the average of the average throughputs of different rotating serus. The 

calculation for the grand average throughput is as follows: different station numbers 

(𝑚 = 10,11,… ,20) are tested for the rotating serus. The length of each station is 𝑠𝑖 =

1/𝑚 (𝑖 = 1,2,… .𝑚), where m is the number of stations within a rotating seru. For each 

combination of worker number and velocity ratio (e.g., 𝑛 = 9  and δ = 1.2 ), 11 

rotating serus are tested, differentiated by their station numbers (𝑚 = 10,11,… ,20). The 

average throughput of workers for each seru is calculated, resulting in 11 average 

throughputs for each combination of 𝑛 and δ. The grand average throughput is the 

average of these 11 average throughputs. For example, the point at the top right of 

Figure 8(a) represents the grand average throughput of the combination 𝑛 = 9 and 

δ = 1.2. 

Figure 8(a) illustrates that as the number of workers, n, increases, the throughput 

decreases. For instance, when δ = 1.6 and 𝑛 = 4, the throughput is 0.496. However, 

when δ = 1.6 but 𝑛 = 6, the throughput decreases to 0.494. The reason for this is that 

as n increases, there are more possibilities for blocking and passing to occur. Similarly, 

as the velocity ratio, δ, increases, the throughput decreases. For example, when 𝑛 = 5 

and δ = 1.2 , the throughput is 0.499. However, when 𝑛 = 5  and δ = 2.0 , the 

throughput decreases to 0.488. The reason for this is that as δ increases, faster workers 

are more likely to frequently pass slower workers. 

Experiment (2): The impact of station numbers 

In this experiment, the impact of changes in the station number m is tested. The 

velocity ratio is varied from 1.1 to 2.9 (𝛿 = 1.1, 1.2,… , 2.9), while other factors (m, �̅�, n, 

𝑠𝑖) remain the same as in Experiment (1). The results are presented in Figure 8(b), 
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where the horizontal axis represents the number of stations m and the vertical axis 

shows the average throughput of workers. For example, the point at the top right of 

Figure 8(b) represents the average throughput for the combination of 𝑛 = 3 and 𝑚 =

20. 

The result of this experiment demonstrates that the throughput increases as the 

number of stations, m, increases. For instance, when 𝑛 = 6  and 𝑚 = 13 , the 

throughput is 0.483. However, when 𝑛 = 6 and 𝑚 = 18, the throughput increases to 

0.490. This is because as m increases, workers have more possibilities to work at 

different stations, leading to fewer instances of blocking and passing. 

       

(a) velocity ratios and worker numbers    (b) station numbers 

 

(c) the variability of velocities 

Figure 8. Impacts of different factors 

Experiment (3): The impact of the variability of work velocities 

As discussed in Section 1, the problem being studied in this paper falls under the 

category of constant velocity and nonpreemptive, as indicated in the upper right 

quadrant of Matrix 1. Problems that are nonpreemptive are considered more 

challenging than those that are preemptive, and problems with varied velocity are 

considered more difficult than those with constant velocity. To the best of our 

knowledge, no studies have been published in the category of varied velocity and 

nonpreemptive, which poses the most challenging research questions. 

This experiment examines the effects of velocity variability. We assume that when 

worker 𝑗 is working on her/his 𝑡-th item, her/his velocity is �̃�𝑗
𝑡 = 𝑣𝑗/(1 + 𝜀𝑗

𝑡), where 

𝑣𝑗 is constant and 𝜀𝑗
𝑡 is an independent and identically distributed random variable, 
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for 𝑗 = 1,2,… , 𝑛  and 𝑡 = 1,2,3,… . Under this assumption, a worker has a different 

velocity each time she/he initiates an item. The results reported are for the case where 

each 𝜀𝑖
𝑡 follows a normal distribution 𝒩(0, 𝜎2), where σ is the standard deviation. 

The result of this experiment is shown in Figure 8(c). The horizontal axis is 𝜎, which 

varies from 0 to 0.5 with a stepwise increase of 0.05. The vertical axis displays the grand 

average throughput, which is calculated in the same way as in Experiment (1). We set 

δ = 2. All other factors (m, �̅�, n, 𝑠𝑖) are kept the same as in Experiment (1). 

From Figure 8(c), it is clear that the throughput decreases as the velocity variability 

σ increases. For example, when 𝜎 = 0.15 and 𝜎 = 0.40, if 𝑛 = 3, the throughputs are 

0.491 and 0.482 respectively, representing a drop of 1.8%. Similarly, when 𝜎 = 0.15 

and 𝜎 = 0.40, if 𝑛 = 9, the throughputs are 0.443 and 0.388, respectively, representing 

a drop of 12.4%. The results in Figure 8(c) indicate that a smaller number of workers, 

n, can better handle the impact of velocity variability. The is because as n decreases, 

there are fewer instances of blocking and passing among workers. 

 

6. Comparisons and Managerial Insights 

In this section, we compare rotating serus to cellular bucket brigades, and based on 

the results from previous sections, we summarize the managerial insights of this study. 

 

6.1. Comparisons with cellular bucket brigades 

We examine a cellular bucket brigade with 𝑚 nonpreemptive discrete stations and 

two workers. Figure 9 depicts the movement of the two workers within the cellular 

bucket brigade. Worker 1 carries an item until he reaches the end of station 𝑖. He then 

exchanges the item with worker 2, and continues working on station 𝑗 + 1 until the 

item he receives from worker 2 is completed. Then, he initiates work on a new item. 

Similarly, worker 2 carries an item until he reaches the end of station 𝑗 . He then 

exchanges the item with worker 1, and continues on station 𝑖 + 1. That is, worker 1 

works on stations 𝑠1~𝑠𝑖 and 𝑠𝑗+1~𝑠𝑚, while worker 2 works on 𝑠𝑖+1~𝑠𝑗, where 0 ≤

𝑖 < 𝑗 ≤ 𝑚 . It is important to note that all assumptions used in this comparison are 

identical to those utilized in the study by Lim and Wu (2014). 

1
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Figure 9. A cellular bucket brigade with discrete and nonpreemptive stations. 

We consider the scenario in which both a rotating seru and a cellular bucket brigade 

have achieved their highest throughputs, represented by 𝑣1 + 𝑣2, where 𝑣1 and 𝑣2 
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are the velocities of workers 1 and 2, respectively. However, the performance of a 

production line is impacted by various internal and external factors, such as hand-offs, 

the tradeoff between specialization and diversification in productivity, and workflow 

and layout design, among others. In this comparison, we focus on the first two 

factors—hand-offs and the tradeoff between specialization and diversification—as 

these are deemed the most relevant. Hand-offs refer to the exchange of items between 

two workers, which is a necessary step in both cellular bucket brigades and rotating 

serus. In addition, the tradeoff between specialization and diversification must be 

taken into account as workers in cellular bucket brigades have a limited set of tasks to 

perform, while workers in rotating serus perform all tasks on all stations. This may 

result in a decrease in productivity as workers may not have the same level of 

proficiency when performing a wider range of tasks and may take longer to complete 

each task. 

Suppose that the rotating seru operates on a behavior cycle 𝑝𝑖 𝑐1𝑐2…𝑐1𝑐2⏟      
𝑘

𝑐1𝑝𝑖, 𝑘 ∈

{0,1,2,… , 𝑘∗}, where 𝑘 and 𝑘∗ are defined as in Section 4. The assembly of an item in 

a bucket brigade requires one hand-off, compared to 1/(2𝑘 + 1)  hand-offs in a 

rotating seru. Let ℎ be the hand-off time required by two workers to exchange items. 

The impact of the tradeoff between specialization and diversification is described by a 

velocity scaling factor 𝜇 ∈ (0,1). 𝑣𝑖 and 𝜇 × 𝑣𝑖 are the velocities of worker 𝑖 in the 

cellular bucket brigade and rotating seru, respectively. 

The average throughput equals the maximum possible throughput 𝑣1 + 𝑣2 offset 

by the waste time in the hand-offs. The throughput of a cellular bucket brigade is 

𝜏𝑐 =
𝑣1+𝑣2

1+ℎ(𝑣1+𝑣2)
                                 (4) 

Correspondingly, the throughput of a rotating seru is offset to 

𝜏𝑟 =
𝑣1+𝑣2

1/𝜇+ℎ(𝑣1+𝑣2)/(2𝑘+1)
                             (5) 

Define the percent improvement in throughput achieved by the rotating seru in 

comparison to the cellular bucket brigade as [(𝜏𝑟 − 𝜏𝑐)/𝜏𝑐] × 100% . Figure 10 

illustrates that the percent improvement increases as 𝑘 increases. In Figure 10(a), we 

set 𝜇 = 0.8 and vary ℎ from 0.1 to 0.5. In Figure 10(b), we set ℎ = 0.2 and vary 𝜇 

from 0.5 to 0.9. For both Figures 10(a) and 10(b), we set 𝑣1 = 2.0 and 𝑣2 = 1.8.  

The results in Figure 10 indicate that rotating serus have a significant advantage over 

cellular bucket brigades when k is large. At k=8, with h=0.5 and 𝜇=0.8, the improvement 

in throughput is as high as 113%; and when k=8, h=0.2, and 𝜇=0.9, the improvement is 

as high as 52%. However, as k gets smaller, the percent improvement decreases and 

can even become negative in some cases. This is because the hand-off times in a 

rotating seru are affected by the value of k. 
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It is important to note that 𝑘 is bounded by 𝑘∗, which increases with an increase in 

the number of stations 𝑚  and a decrease in the velocity ratio of workers 𝑟 . This 

observation suggests that a large number of stations and a small difference in worker 

velocities favors the use of rotating serus. This is because, by properly adjusting the 

work content distribution on stations, rotating serus have a greater possibility of 

wasting less time on hand-offs as 𝑘∗ becomes larger. 

        

           (a) 𝜇 = 0.8                                (b) ℎ = 0.2            

Figure 10. Throughput improvement by the rotating seru. 

The hand-off time ℎ and the scaling factor 𝜇 also play a significant role in Figure 

10. When 𝑘 = 0, the rotating seru never outperforms the cellular bucket brigade due 

to 𝜇 < 1 . When 𝑘 > 0 , the rotating seru outperforms the cellular bucket brigade if 

either of the following two conditions is satisfied. First, given a scaling factor μ, the 

hand-off time ℎ  is larger than the critical hand-off time ℎ∗ =
(1−𝜇)(2𝑘+1)

2𝑘𝜇(𝑣1+𝑣2)
 . Second, 

given a hand-off time ℎ, the scaling factor μ is larger than the critical scale factor 𝜇∗ =

2𝑘+1

2𝑘+1+2𝑘ℎ(𝑣1+𝑣2)
. These two critical values can be obtained from Equations (4) and (5). 

The curves in Figure 11 represent the critical hand-off times and the critical scale 

factors. In Figure 11(a), the rotating seru (cellular bucket brigade) is favored when the 

hand-off is located in the region above (below) the curve. For example, when 𝑘 = 2, 

the rotating seru is the preferred choice if the hand-off time is higher than 0.082. 

Similarly, in Figure 11(b), the rotating seru (cellular bucket brigade) is preferred when 

the scale factor is located in the region above (below) the curve. For example, when 

𝑘 = 2, the rotating seru is preferred if the scaling factor is greater than 0.622. 
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 (a) The critical hand-off time, 𝜇 = 0.8.      (b) The critical scaling factor, ℎ = 0.2. 

Figure 11. The critical hand-off time and velocity scale. 

 

6.2. Managerial insights 

The comparison in Section 6.1 reveals that neither the rotating seru nor the cellular 

bucket brigade is a one-size-fits-all production mode. The performance of a production 

line can vary in terms of hand-off times and velocity scale factors. The choice between 

the rotating seru and the cellular bucket brigade will depend on the specific production 

context and requirements. The rotating seru can provide a better solution in cases 

where ℎ , 𝜇  and 𝑘  are high, while the cellular bucket brigade is a better choice in 

other cases. The important thing is to consider both options and determine which one 

will provide the best performance for the specific production scenario. This 

observation leads to the following managerial insight. 

MI1: There is no universally best assembly system. The rotating seru provides an alternative 

or option for existing production systems. 

Based on MI1, we identify under which conditions a rotating seru is the best choice. 

The use of serus in production has become increasingly popular due to the need to 

adapt to volatile markets characterized by frequently changing product models, short 

product life cycles, and fluctuating demand. Rotating serus are particular suitable for 

handling fluctuations in production volume. This is achieved by adjusting the number 

of workers within the seru production system. For example, during a demand surge, 

to increase production capacity, additional workers can be added into exist yatais 

(recall that a yatai is a rotating seru with only one worker), converting them into 

rotating serus, and then returning them to their original form after the surge. This 

adaptability is a key advantage of rotating serus, separating them from traditional 

assembly lines and other production systems. This approach helps companies to be 

more nimble and responsive to market changes, making them more agile and resilient 

in their operations. 

However, based on the results of this study, it was found that adding workers to 

yatais without optimizing the rotating seru designs can increase the human capacity 

(i.e., the number of workers), but may also lead to a decrease in the overall 

performance of the newly created rotating serus. For instance, consider a scenario 

where a worker with velocity 1 is added into a 3-station yatai, where the other worker’s 

velocity is 2. Assume that the work content at the 3 stations is 8/10, 1/10, and 1/10, 

respectively. If the first station is designated as the passing station, using Theorem 2 

in Section 3.1, the throughput of the rotating seru is calculated to be 10/9. However, the 

original throughput of the yatai was 2; in this case the addition of another worker 

resulted in a 44% decrease in the throughput. This leads to our second managerial 
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insight. 

MI2: To improve the throughput of a seru system  the addition of workers must be 

approached strategically and scientifically. Otherwise  it may have a detrimental effect on the 

performance of the seru system. 

The significance of MI2 lies in highlighting the potential obstacles and unintended 

consequences that may arise from the improper use of rotating serus. The objective of 

this research is to address these issues by offering optimized rotating seru design 

methods through Theorems 2, 3, 4, and 5. 

The significance of Theorems 2, 3, 4, and 5 lies in their potential to provide a simple 

and manageable approach for managers to optimize rotating seru design in a volatile 

environment. As demonstrated by management scholars (Davis et al., 2009; Bingham 

and Eisenhardt 2011), simple rules are effective in providing a straightforward method 

for navigating and controlling complex organizations. Unlike mathematical models 

and software, simple rules are easy to understand and implement, enabling managers 

to have greater control over complex organizations without relying on complex 

technology. A good example of a successful simple rule in practice is the Kanban 

system used in the Toyota production system, which is widely recognized as an 

efficient method for managing a complex manufacturing process. 

Theorems 2 and 4 in this study are simple, indicating that setting the work content 

of a station to 1/(𝑟 + 1) results in the highest throughput when 𝑟 ≥ 2, meaning that 

the higher-speed worker is at least twice as fast as the slower worker. On the other 

hand, when 1 < 𝑟 < 2, Theorems 3 and 5 are not as simple, requiring the work content 

to be set to (𝑘 + 1 − 𝑘𝑟)/(𝑟 + 1) to achieve the highest throughput. However, when 

closely examining the equation, it becomes clear that as 𝑟  approaches 1, (𝑘 + 1 −

𝑘𝑟)/(𝑟 + 1)  approaches the simple value of 1/(𝑟 + 1) , indicating that the workers 

have similar velocities. This managerial insight is crucial for implementating a rotating 

seru. 

MI3: To maximize throughput  a worker should be added who is either at least twice as fast 

or at most half as fast as the current worker in the yatai  or has a similar velocity. The work 

content should then be set using the simple value 1/(𝑟 + 1). 

 

7. Conclusions 

Seru production systems have gained significant attention from researchers and 

practitioners due to their high responsiveness capabilities. de Treville et al. (2017) and 

Yin et al. (2017) have emphasized their usefulness for countries with high-cost, high-

skill labor. Lewis (2020) stated in a comprehensive overview of operations 

management (OM) research that seru production is an extension of lean production 

that can quickly respond to volatile market demand. A comparison between serus and 
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other manufacturing systems can be found in Yin et al. (2018). In current competitive 

business environments (Xu 2021; Park 2022), innovative process innovations are 

required (Matsuno et al. 2021; Zhang et al. 2021; Wang and Li 2022; Wang et al., 2022), 

and the seru production system has the potential to meet this demand. The 

fundamental management and control principles of seru production systems have 

been outlined by Stecke et al. (2012), Liu et al. (2014), and Yin et al. (2017). 

The use of rotating serus in Asian electronics manufacturing companies for assembly 

systems has been prevalent, yet theories for their implementation have been limited. 

This study analyzed the mechanisms of a rotating seru with discrete and 

nonpreemptive stations through the use of theories from dynamical systems. Within 

such a seru, only one worker is allowed to work on a station at any time, and her/his 

work cannot be interrupted within a station. Rotating rules are introduced and 

summarized. The goal was to identify conditions that would lead to maximum 

throughput. The cycles and throughputs of three-station two-worker rotating serus 

were analyzed and determined, and the results were extended to larger systems. The 

findings, presented in Theorems 4 and 5, provide guidelines for designing a rotating 

seru with discrete stations to maximize throughput, making them a valuable resource 

for managers in floor shops. This study's results can help managers achieve the 

optimal design for maximum throughput without relying on trial-and-error methods. 

The chaotic characteristics of rotating serus were also demonstrated, and simulations 

were run to assess the impact of various factors on throughput. 

Previous studies have viewed rotating serus as a black box, as seen in the works of 

Gai et al. (2022), Liu et al. (2022), Zhan et al. (2022), Zhang et al. (2022a, 2022b, 2022c, 

2022d), and Li (2023). This study is the first to open the black box by analyzing the 

inside mechanisms of rotating serus. Factors affecting serus, such as random work 

velocities at stations, different walking speeds, and others, are relevant and intriguing 

topics for future research. In addition, a comparison among the three types of serus—

rotating serus, divisional serus (staffed by partially cross-trained workers with tasks 

divided into different sections), and yatais—would be an interesting area for analysis. 
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Online Electronic Appendix 

In this online electronic appendix, Section A.1 includes proofs for all theorems and 

lemmas, Section A.2 includes all illustrative examples mentioned in the paper. 

A.1. Proofs for theorems and lemmas 

 Proof of THEOREM 1. 

First, we prove the existence of a cycle. Given arbitrary initial positions of 𝑥1 and 

𝑥2 , we can find the initial state 𝑎(0) , and we have an orbit {𝑎(0), 𝑎(1), … , 𝑎(𝑡), … }  of 

passing or blocking behaviors under the function 𝑎(𝑡+1) = 𝑓(𝑎(𝑡)). Correspondingly, 

we have the orbit {𝑖(0), 𝑖(1), … , 𝑖(𝑡), … } of station indices, where 𝑖(𝑡) is the index of the 

station where 𝑎(𝑡)  occurs. We continue iterating through these two orbits 

synchronously until we reach the first behavior 𝑎(𝑤) with which we have 𝑎(𝑤) = 𝑎(𝑢) 

and 𝑖(𝑤) = 𝑖(𝑢) , 𝑢 ∈ {0,1,… ,𝑤 − 1} . Since the number of stations is limited and the 

velocity of the first worker 𝑣1 is faster than the velocity of the second worker 𝑣2, we 

can always find these two identical behaviors 𝑎(𝑢) and 𝑎(𝑤). By the rotating seru rules 

of Section 2.1, because 𝑖(𝑤) = 𝑖(𝑢) , the positions of the two workers after behaviors 

𝑎(𝑤) and 𝑎(𝑢) are the same. In this way, a cycle {𝑎(𝑢), 𝑎(𝑢+1), … , 𝑎(𝑤)} is constructed. 

We call it a period-n cycle, where 𝑛 = 𝑤 − 𝑢. 

Next, we prove the uniqueness of the cycle {𝑎(𝑢), 𝑎(𝑢+1), … , 𝑎(𝑤)}  for any 

combination of (𝑥1, 𝑥2, 𝑣1, 𝑣2), where 𝑎(𝑤) = 𝑎(𝑢). Assume that this is not true and there 

exist two distinct cycles beginning with an initial state 𝑎(0) . This means that there 

exists at least one passing or blocking behavior in the cycle {𝑎(𝑢), 𝑎(𝑢+1), … , 𝑎(𝑤)} , 

which has two different successors (i.e., two different positions of worker 1 and two 

different positions of worker 2). However, for the two-worker and m-station rotating 

seru, the successor of any passing or blocking behavior is unique, which leads to a 

contradiction. □ 

 

 Proof of LEMMA 1. 

(1). If 𝑐2 does not occur, there is a single instance of 𝑐1 between 𝑎(𝑡) and 𝑎(𝑡+1) 

(i.e., 𝑎(𝑡)𝑐1𝑎
(𝑡+1)). If there were two or more instances of 𝑐1 between 𝑎(𝑡) and 𝑎(𝑡+1), 

there would have to be a passing behavior 𝑐1𝑝𝑐1 between each consecutive 𝑐1, which 

would result in a contradiction. 

Now, if 𝑐2 does occur between 𝑎(𝑡) and 𝑎(𝑡+1), let the positions of workers 1 and 

2 be 𝑥1  and 𝑥2 , respectively. Regardless of the behavior of 𝑎(𝑡)  (i.e., passing or 

blocking), after 𝑎(𝑡), the relationship between the workers’ positions will be 𝑥2 < 𝑥1, 

meaning that worker 2 is closer to the entrance and worker 1 is closer to the exit. 

Therefore, if the behavior after 𝑎(𝑡) is either 𝑐1 or 𝑐2, it must be 𝑐1, not 𝑐2. 
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(2). If 𝑐1 and 𝑐2 do not occur alternatively, there are two cases to consider. 

Case 1. Two or more 𝑐1 occur successively. Before 𝑐1, the relationship between the 

workers’ positions must be 𝑥2 < 𝑥1 . After 𝑐1 , the relationship changes to 𝑥1 < 𝑥2 . 

Before the next 𝑐1, the relationship must be 𝑥2 < 𝑥1 again. Only two behaviors can 

change 𝑥1 < 𝑥2 to 𝑥2 < 𝑥1: a 𝑐2 or worker 1 passing worker 2. Because the behaviors 

are in a repeating pattern, it must be 𝑐2. 

Case 2. Two or more 𝑐2 occur successively. The proof is similar to case 1. 

(3). If 𝑎(𝑡+1) ∈ 𝑃, before 𝑎(𝑡+1), the relationship between the workers’ positions is 

𝑥1 < 𝑥2 . Therefore, if the behavior before 𝑎(𝑡+1)  is circling, it must be 𝑐1 . From 

property (1), the behavior after 𝑎(𝑡)  is 𝑐1 ; Form property (2), 𝑐1  and 𝑐2  occur 

alternatively. So, the number of occurrences of 𝑐1 is one more than that of 𝑐2. 

(4). If 𝑎(𝑡+1) ∈ 𝐵, before 𝑎(𝑡+1), the relationship between the workers’ positions is 

𝑥2 < 𝑥1 . Therefore, if the behavior before 𝑎(𝑡+1)  is circling, it must be 𝑐2 . From 

property (1), the behavior after 𝑎(𝑡)  is 𝑐1 ; Form property (2), 𝑐1  and 𝑐2  occur 

alternatively. So, the number of occurrences of 𝑐1 is equal to that of 𝑐2. □ 

 

 Proof of LEMMA 2. 

(1) We set 𝑎(𝑡) ∈ {𝑝𝑖, 𝑏𝑖} and 𝑎(𝑡+1) = 𝑝𝑗, where 𝑖, 𝑗 = 1,2,… ,𝑚. 

  From (3) of Lemma 1, we have 𝑎(𝑡)(𝑐1𝑐2)
𝑘𝑐1𝑎

(𝑡+1) . We show 𝑘 ≤ ⌈
𝒎−𝟏−𝒓

𝒎(𝒓−𝟏)
⌉ + 1  as 

follows. 

There are two exclusive cases: (A) 𝑟 ≥ 2 and (B) 2 > 𝑟 > 1. 

    (A) 𝑟 ≥ 2 

        Since 𝑟 ≥ 2, it follows that 
2

𝑣1
≤

1

𝑣2
. Therefore, the next iterate (or state, we 

use them interchangeably hereafter) will occur before worker 2 can reach the 

start of station 𝑖 again. Thus, we have 𝑘 ≤ 1. 

(B) 2 > 𝑟 > 1 

Suppose that 𝑘 > ⌈
𝒎−𝟏−𝒓

𝒎(𝒓−𝟏)
⌉ + 1 . Then, 𝑘 ≥

𝑚−1−𝑟

𝑚(𝑟−1)
+ 2 . This implies that 

𝑘−2+1/𝑚

𝑣2
≥
𝑘−1−1/𝑚

𝑣1
. We have two exclusive cases: (a) 𝑠𝑖 ≥ 1/𝑚 and (b) 𝑠𝑖 <

1/𝑚. 

(a) 𝑠𝑖 ≥ 1/𝑚 

If 𝑠𝑖 ≥
1

𝑚
, then we have 

𝑘−2+𝑠𝑖

𝑣2
≥
𝑘−2+1/𝑚

𝑣2
≥
𝑘−1−1/𝑚

𝑣1
≥
𝑘−1−𝑠𝑖

𝑣1
. This implies 

that the next iterate will occur before worker 2 completes 𝑘 − 1 items and 

then reaches the end of station 𝑖 . Thus, 𝑏𝑖(𝑐1𝑐2)
𝑘𝑐1𝑝𝑗  or 𝑝𝑖(𝑐1𝑐2)

𝑘𝑐1𝑝𝑗 

cannot be constructed. 

(b) 𝑠𝑖 < 1/𝑚  
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Assume that for any station 𝑗′, s𝑗′ <
1

𝑚
. We have ∑ 𝑠𝑗′

𝑚
𝑗′=1 < 1. Therefore, 

if 𝑠𝑖 < 1/𝑚 , there exists at least one station 𝑗′  (𝑗′ ≠ 𝑖 ), 𝑠𝑗′ ≥ 1/𝑚 . Since 

𝑠𝑗′ ≥ 1/𝑚, we have 
𝑘−2+𝑠

𝑗′

𝑣2
≥
𝑘−2+1/𝑚

𝑣2
≥
𝑘−1−1/𝑚

𝑣1
≥
𝑘−1−𝑠

𝑗′

𝑣1
. There are two 

exclusive cases: (i) 𝑖 < 𝑗′ and (ii) 𝑖 ≥ 𝑗′. 

   (i) 𝑖 < 𝑗′ 

The time for worker 1 to complete 𝑘 − 1 items and reach the start of 

station 𝑗’  is 𝑡1 =
𝑠𝑖+1+⋯+𝑠𝑚+𝑘−2+𝑠1+⋯+𝑠𝑗′−1

𝑣1
=
𝑘−1+𝑠𝑖+1+⋯+𝑠𝑗′−1

𝑣1
 . The time 

for worker 2 to complete 𝑘 − 2 items and reach the end of station 𝑗’ is 

𝑡2 =
𝑠𝑖+⋯+𝑠𝑚+𝑘−3+𝑠1+⋯+𝑠𝑗′

𝑣2
=
𝑘−2+𝑠𝑖+⋯+𝑠𝑗′

𝑣2
 . Combined with 

𝑘−2+𝑠
𝑗′

𝑣2
≥

𝑘−1−𝑠
𝑗′

𝑣1
, we have 𝑡2 ≥ 𝑡1 +

𝑠𝑖+⋯+𝑠𝑗′−1

𝑣2
−
𝑠𝑖+1+⋯+𝑠𝑗′

𝑣1
. 

If 
𝑠𝑖+⋯+𝑠𝑗′−1

𝑣2
<
𝑠𝑖+1+⋯+𝑠𝑗′

𝑣1
 , worker 2 can reach the start of station 𝑗′ 

before worker 1 finishes his work on station 𝑗′ . Therefore, we have 

𝑎(𝑡+1) = 𝑏𝑗′ , and the behaviors 𝑏𝑖(𝑐1𝑐2)
𝑘𝑐1𝑝𝑗 or 𝑝𝑖(𝑐1𝑐2)

𝑘𝑐1𝑝𝑗 cannot 

be constructed. 

If 
𝑠𝑖+⋯+𝑠𝑗′−1

𝑣2
≥
𝑠𝑖+1+⋯+𝑠𝑗′

𝑣1
 , we have 𝑡2 ≥ 𝑡1 . The next iterate will occur 

before worker 1 completes 𝑘 − 1 items and reaches the start of station 

𝑗′ . Also, the behaviors 𝑏𝑖(𝑐1𝑐2)
𝑘𝑐1𝑝𝑗  or 𝑝𝑖(𝑐1𝑐2)

𝑘𝑐1𝑝𝑗  cannot be 

constructed. 

(ii) 𝑖 ≥ 𝑗′ 

The time for worker 1 to complete 𝑘  items and reach the start of 

station 𝑗′ is 𝑡1 =
𝑠𝑖+1+⋯+𝑠𝑚+𝑘−1+𝑠1+⋯+𝑠𝑗′−1

𝑣1
=
𝑘−(𝑠

𝑗′
+⋯+𝑠𝑖)

𝑣1
. The time for 

worker 2 to complete 𝑘 − 1 items and reach the end of station 𝑗′ is 

𝑡2 =
𝑠𝑖+⋯+𝑠𝑚+𝑘−2+𝑠1+⋯+𝑠𝑗′

𝑣2
=
𝑘−1−(𝑠

𝑗′+1
+⋯+𝑠𝑖−1)

𝑣2
 . Combined with 

𝑘−2+𝑠
𝑗′

𝑣2
≥
𝑘−1−𝑠

𝑗′

𝑣1
 , we have 𝑡2 ≥ 𝑡1 +

(𝑠𝑖+⋯+𝑠𝑚)+(𝑠1+⋯+𝑠𝑗′−1)

𝑣2
−

(𝑠𝑖+1+⋯+𝑠𝑚)+(𝑠1+⋯+𝑠𝑗′)

𝑣1
. 

If 
(𝑠𝑖+⋯+𝑠𝑚)+(𝑠1+⋯+𝑠𝑗′−1)

𝑣2
<
(𝑠𝑖+1+⋯+𝑠𝑚)+(𝑠1+⋯+𝑠𝑗′)

𝑣1
 , worker 2 can reach 

the start of station 𝑗′ before worker 1 finishes his work on station 𝑗′. 

So, we have 𝑎(𝑡+1) = 𝑏𝑗′ , the behaviors 𝑏𝑖(𝑐1𝑐2)
𝑘𝑐1𝑝𝑗 or 𝑝𝑖(𝑐1𝑐2)

𝑘𝑐1𝑝𝑗 
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cannot be constructed. 

If 
(𝑠𝑖+⋯+𝑠𝑚)+(𝑠1+⋯+𝑠𝑗′−1)

𝑣2
≥
(𝑠𝑖+1+⋯+𝑠𝑚)+(𝑠1+⋯+𝑠𝑗′)

𝑣1
 , we have 𝑡2 ≥ 𝑡1 . The 

next iterate will occur before worker 1 completes 𝑘 items and reaches 

the start of station 𝑗′ . Also, the behaviors 𝑏𝑖(𝑐1𝑐2)
𝑘𝑐1𝑝𝑗  or 

𝑝𝑖(𝑐1𝑐2)
𝑘𝑐1𝑝𝑗 cannot be constructed. 

    Taken together Case (A) and Case (B), under the assumption of 𝑘 > ⌈
𝒎−𝟏−𝒓

𝒎(𝒓−𝟏)
⌉ + 1, 

the behaviors 𝑏𝑖(𝑐1𝑐2)
𝑘𝑝𝑗  or 𝑝𝑖(𝑐1𝑐2)

𝑘𝑝𝑗  cannot be constructed. So, we can 

conclude that if 𝑎(𝑡+1) ∈ 𝑃, we have 𝑎(𝑡)(𝑐1𝑐2)
𝑘𝑐1𝑎

(𝑡+1) and 𝑘 ≤ ⌈
𝒎−𝟏−𝒓

𝒎(𝒓−𝟏)
⌉ + 1. 

(2) We set 𝑎(𝑡) ∈ {𝑝𝑖, 𝑏𝑖} and 𝑎(𝑡+1) = 𝑏𝑗, where 𝑖, 𝑗 = 1,2,… ,𝑚. 

From (4) of Lemma 1, we have 𝑎(𝑡)(𝑐1𝑐2)
𝑘𝑎(𝑡+1). We show 𝑘 ≤ 1 as follows. 

The time for worker 1 to complete 𝑘 items and reach the end of station 𝑗 is 𝑡1 =

(𝑠𝑖+1+⋯+𝑠𝑚)+𝑘−1+(𝑠1+⋯+𝑠𝑗)

𝑣1
. The time for worker 2 to complete 𝑘 items and reach 

the start of station 𝑗 is 𝑡2 =
(𝑠𝑖+⋯+𝑠𝑚)+𝑘−1+(𝑠1+⋯+𝑠𝑗−1)

𝑣2
.  

There are two cases: (A) 𝑖 < 𝑗 and (B) 𝑖 ≥ 𝑗. 

(A) If 𝑖 < 𝑗, then 𝑘 = 0. 

        Suppose that 𝑘 > 0. 

We have 𝑡1 − 𝑡2 = 𝑘 (
1

𝑣1
−

1

𝑣2
) +

𝑠𝑖+1+⋯+𝑠𝑗

𝑣1
−
𝑠𝑖+⋯+𝑠𝑗−1

𝑣2
. 

If 
𝑠𝑖+⋯+𝑠𝑗−1

𝑣2
>
𝑠𝑖+1+⋯+𝑠𝑗

𝑣1
, we have 𝑡1 < 𝑡2, since 

1

𝑣1
−

1

𝑣2
< 0 and 𝑘 > 0. Thus, 

we have 𝑎(𝑡+1) = 𝑏𝑗′ , 𝑗
′ ≠ 𝑗.  

If 
𝑠𝑖+⋯+𝑠𝑗−1

𝑣2
<
𝑠𝑖+1+⋯+𝑠𝑗

𝑣1
, we have 𝑘 = 0, which contradicts with 𝑘 > 0.  

(B) If 𝑖 ≥ 𝑗, then 𝑘 = 1. 

Suppose that 𝑘 > 1.  

We have 𝑡1 − 𝑡2 = (𝑘 − 1) (
1

𝑣1
−

1

𝑣2
) +

(𝑠𝑖+1+⋯+𝑠𝑚)+(𝑠1+⋯+𝑠𝑗)

𝑣1
−

(𝑠𝑖+⋯+𝑠𝑚)+(𝑠1+⋯+𝑠𝑗−1)

𝑣2
. 

If 
(𝑠𝑖+1+⋯+𝑠𝑚)+(𝑠1+⋯+𝑠𝑗)

𝑣1
<
(𝑠𝑖+⋯+𝑠𝑚)+(𝑠1+⋯+𝑠𝑗−1)

𝑣2
 , we have 𝑡1 < 𝑡2 , since 

1

𝑣1
−

1

𝑣2
< 0 and 𝑘 > 1. Thus, we have 𝑎(𝑡+1) = 𝑏𝑗′ , 𝑗

′ ≠ 𝑗. 

If 
(𝑠𝑖+1+⋯+𝑠𝑚)+(𝑠1+⋯+𝑠𝑗)

𝑣1
>
(𝑠𝑖+⋯+𝑠𝑚)+(𝑠1+⋯+𝑠𝑗−1)

𝑣2
 , we have 𝑘 = 1 , which 

contradicts with 𝑘 > 1. 
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Taken together Case (a) and Case (b), under the assumption of 𝑘 > 1, the behaviors 

𝑝𝑖(𝑐1𝑐2)
𝑘𝑏𝑗 or 𝑝𝑖(𝑐1𝑐2)

𝑘𝑏𝑗 cannot be constructed. So, we can conclude that if 𝑎(𝑡+1) ∈

𝐵, we have 𝑎(𝑡)(𝑐1𝑐2)
𝑘𝑎(𝑡+1) and 𝑘 ≤ 1. □ 

 

 Proof of LEMMA 3. 

We construct the function 𝑓  for the following three cases separately: (A)  𝑎(𝑡) ∈

{𝑝1, 𝑏1} , (B)  𝑎
(𝑡) ∈ {𝑝2, 𝑏2} , and (C)  𝑎(𝑡) ∈ {𝑝3, 𝑏3} . We determine the next iterate 

𝑎(𝑡+1)  by considering all possible combinations of work content distributions on 

stations. 

(A) 𝑎(𝑡) ∈ {𝑝1, 𝑏1} 

The positions where workers 1 and 2 are located immediately after 𝑝1 or 𝑏1 are 

the end and the start of station 1, respectively. Since 𝑟 ≥ 2 ⟹
2

𝑣1
≤

1

𝑣2
 , the next 

iterate will occur before worker 2 can complete an item and reach the start of 

station 1. There are five subcases, (a)-(e), with respect to the different work content 

distributions. 

(a) 𝑎(𝑡+1) = 𝑝1 if 𝑠1 ≥ 1/(𝑟 + 1). 

If 𝑠1 ≥
1

𝑟+1
⟺

𝑠2+𝑠3

𝑣1
≤
𝑠1

𝑣2
, worker 1 can complete an item and return to the start 

of station 1 before worker 2 reaches the end of station 1. Thus, 𝑝1 will occur. 

(b) 𝑎(𝑡+1) = 𝑏2 if 𝑟𝑠1 < 𝑠2. 

    If 𝑟𝑠1 < 𝑠2  and 𝑠2 < 1 − 𝑠1 , we have 𝑠1 <
1

𝑟+1
⟹

𝑠1

𝑣2
<
1−𝑠1

𝑣1
 . Thus, we can 

guarantee that 𝑝1 will not occur. 

If 𝑟𝑠1 < 𝑠2 ⟺
𝑠2

𝑣1
>
𝑠1

𝑣2
, worker 2 can reach the start of station 2 before worker 

1 finishes his work on station 2. Thus, 𝑏2 will occur. 

(c) 𝑎(𝑡+1) = 𝑏3 if 𝑟𝑠1 ≥ 𝑠2 and  𝑟𝑠1 + (𝑟 − 1)𝑠2 < 𝑠3. 

    If 𝑟𝑠1 + (𝑟 − 1)𝑠2 < 𝑠3 and 𝑠3 = 1 − 𝑠1 − 𝑠2, we have (𝑟 + 1)𝑠1 < 1 − 𝑟𝑠2 <

1 ⟹ 𝑠1 <
1

𝑟+1
. Thus, we can guarantee that 𝑝1 will not occur. 

    If 𝑟𝑠1 ≥ 𝑠2, we can guarantee that 𝑏2 will not occur. 

If  𝑟𝑠1 + (𝑟 − 1)𝑠2 < 𝑠3 ⟺
𝑠1+𝑠2

𝑣2
<
𝑠2+𝑠3

𝑣1
, worker 2 can reach the start of station 

3 before worker 1 finishes his work on station 3. Thus, 𝑏3 will occur. 

(d)  𝑎(𝑡+1) = 𝑝2  if 𝑟𝑠1 ≥ 𝑠2 ,  𝑟𝑠1 + (𝑟 − 1)𝑠2 ≥ 𝑠3   𝑠1 < 1/(𝑟 + 1)  and 𝑠3 ≤ (𝑟 −

1)/𝑟. 

If 𝑟𝑠1 ≥ 𝑠2  𝑟𝑠1 + (𝑟 − 1)𝑠2 ≥ 𝑠3 and 𝑠1 <
1

𝑟+1
, we can guarantee that 𝑏2  𝑏3 

and 𝑝1 will not occur. 
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If 𝑠3 ≤
𝑟−1

𝑟
⟺

𝑠2+𝑠3+𝑠1

𝑣1
=

1

𝑣1
≤
1−𝑠3

𝑣2
=
𝑠1+𝑠2

𝑣2
, worker 1 can complete an item and 

reach the start of station 2 before worker 2 reaches the end of station 2. Thus, 

𝑝2 will occur. 

(e) 𝑎(𝑡+1) = 𝑝3. In this subcase, we can guarantee that 𝑏2  𝑏3  𝑝1 and 𝑝2 will not 

occur. 

Due to 𝑟 ≥ 2 ⟺ 𝑠2 < 1 ≤ 𝑟 − 1 ⟺
𝑠2+𝑠3+𝑠1+𝑠2

𝑣1
=
1+𝑠2

𝑣1
<

1

𝑣2
=
𝑠1+𝑠2+𝑠3

𝑣2
, worker 1 

can complete an item and reach the start of station 3 before worker 2 reaches 

the end of station 3. Thus, 𝑝3 will occur.  

Following the same method as described for case (A), the function 𝑓 for case (B) 

and case (C) can be constructed. □ 

 

 Proof of LEMMA 4. 

We define the following twelve lines 𝑙1~𝑙12, as illustrated in Figure A.1. Each line 

represents a combination of work content distribution and velocity ratio for function 

𝑎(𝑡+1) = 𝑓(𝑎(𝑡)) when 𝑟 ≥ 2. Let  

𝑙1: 𝑠2 = 𝑟𝑠1; 𝑙2: 𝑠2 =
1

𝑟+1
−

1

𝑟+1
𝑠1 ⟺ 𝑟𝑠2 = 𝑠3; 𝑙3: 𝑠2 = 1 −

𝑟+1

𝑟
𝑠1 ⟺ 𝑟𝑠3 = 𝑠1; 

𝑙4: 𝑠2 =
1

𝑟
−
𝑟+1

𝑟
𝑠1⟺ 𝑟𝑠1 + (𝑟 − 1)𝑠2 = 𝑠3;  

𝑙5: 𝑠2 = 1 − 𝑟 + 𝑟𝑠1 ⟺ 𝑟𝑠2 + (𝑟 − 1)𝑠3 = 𝑠1; 

𝑙6: 𝑠2 =
𝑟

𝑟+1
−

1

𝑟+1
𝑠1 ⟺ 𝑟𝑠3 + (𝑟 − 1)𝑠1 = 𝑠2; 

𝑙7: 𝑠1 =
𝑟−1

𝑟
; 𝑙8: 𝑠2 =

𝑟−1

𝑟
; 𝑙9: 𝑠1 + 𝑠2 =

1

𝑟
⟺ 𝑠3 =

𝑟−1

𝑟
; 

𝑙10: 𝑠1 =
1

𝑟+1
; 𝑙11: 𝑠2 =

1

𝑟+1
; 𝑙12: 𝑠2 =

𝑟

𝑟+1
− 𝑠1 ⟺ 𝑠3 =

1

𝑟+1
. 

We divide the entire feasible work content area into seven regions, as displayed in 

Figure 4(a). If 𝑟 ≥ 2  lines 𝑙1~𝑙9 intersect with region 1~6, as demonstrated in Figure 

A.1, which represent different work content distributions. We check the function 

𝑎(𝑡+1) = 𝑓(𝑎(𝑡)) to determine cycles and throughputs of a rotating seru in each region 

separately. Let 

𝜃1 = 𝑝1𝑐1𝑝1, 𝜃2 = 𝑝2𝑐1𝑝2, 𝜃3 = 𝑝3𝑐1𝑝3. And 𝜏1 = 𝑣2/𝑠1, 𝜏2 = 𝑣2/𝑠2, 𝜏3 = 𝑣2/𝑠3. 
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Figure A.1. Seven regions intersect with lines 𝑙1~𝑙9 when 𝑟 ≥ 2. 

Region 1, This region is partitioned into eight mutually exclusive sub regions 1a~1h 

by lines 𝑙2  𝑙3  𝑙5 and 𝑙7. We construct cycles by tracking all feasible initial iterates 

𝑎(0) in each sub region. 

(A) If 𝑎(0) ∈ {𝑝1, 𝑏1}, 

For all the eight sub regions, we have 𝑓(𝑎(0)) = 𝑝1 because 𝑠1 ≥
1

𝑟+1
. Thus, the 

orbit 𝑝1 → 𝑓(𝑝1): 𝑝1 → ⋯ or 𝑏1 → 𝑓(𝑏1): 𝑝1 → ⋯ is obtained. 

——In this case, 𝜃1 is constructed with throughput 𝜏1. 

(B) If 𝑎(0) ∈ {𝑝3, 𝑏3}, 

(a) For sub regions 1b, 1c, 1d and 1e, 

We have 𝑓(𝑎(0)) = 𝑏1 because 𝑠2 > 1 −
𝑟+1

𝑟
𝑠1. Combined with case (A), the 

orbit 𝑝3 → 𝑓(𝑝3): 𝑏1 → 𝑓(𝑏1): 𝑝1 → ⋯  or 𝑏3 → 𝑓(𝑏3): 𝑏1 → 𝑓(𝑏1): 𝑝1 → ⋯  is 

obtained.  

——In this case, 𝜃1 is constructed with throughput 𝜏1. 

(b) For sub regions 1a, 1f, 1g and 1h, 

We have 𝑓(𝑎(0)) = 𝑝1  because 𝑠2 ≤ 1 −
𝑟+1

𝑟
𝑠1   𝑠2 ≤

𝑟

𝑟+1
−

1

𝑟+1
𝑠1   𝑠1 + 𝑠2 >

𝑟

𝑟+1
   and 𝑠2 ≤

𝑟−1

𝑟
 . Combined with case (A), the orbit 𝑝3 → 𝑓(𝑝3): 𝑝1 →

𝑓(𝑝1): 𝑝1 → ⋯ or 𝑏3 → 𝑓(𝑏3): 𝑝1 → 𝑓(𝑝1): 𝑝1 → ⋯ is obtained.  

——In this case, 𝜃1 is constructed with throughput 𝜏1. 

(C) If 𝑎(0) ∈ {𝑝2, 𝑏2}, 

(a) For sub regions 1e, 1f and 1g, 

0 s1
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We have 𝑓(𝑎(0)) = 𝑏3 because 𝑠2 <
1

𝑟+1
−

1

𝑟+1
𝑠1. 

    (I) For sub region 1e, 

Combined with case (A) and case (B)(a), the orbit 𝑝2 → 𝑓(𝑝2): 𝑏3 →

𝑓(𝑏3): 𝑏1 → 𝑓(𝑏1): 𝑝1 → ⋯  or 𝑏2 → 𝑓(𝑏2): 𝑏3 → 𝑓(𝑏3): 𝑏1 → 𝑓(𝑏1): 𝑝1 → ⋯ 

is obtained. 

        ——In this case, 𝜃1 is constructed with throughput 𝜏1. 

    (II) For sub regions 1f and 1g, 

Combined with case (A) and case (B)(b), the orbit 𝑝2 → 𝑓(𝑝2): 𝑏3 →

𝑓(𝑏3): 𝑝1 → 𝑓(𝑏1): 𝑝1 → ⋯  or 𝑏2 → 𝑓(𝑏2): 𝑏3 → 𝑓(𝑏3): 𝑝1 → 𝑓(𝑏1): 𝑝1 → ⋯ 

is obtained. 

——In this case, 𝜃1 is constructed with throughput 𝜏1. 

(b) For sub region 1d,  

We have 𝑓(𝑎(0)) = 𝑏1  because 𝑠2 ≥
1

𝑟+1
−

1

𝑟+1
𝑠1  and 𝑠2 < 1 − 𝑟 + 𝑟𝑠1 . 

Combined with case (A), the orbit 𝑝2 → 𝑓(𝑝2): 𝑏1 → 𝑓(𝑏1): 𝑝1 → ⋯  or 𝑏2 →

𝑓(𝑏2): 𝑏1 → 𝑓(𝑏1): 𝑝1 → ⋯ is obtained. 

——In this case, 𝜃1 is constructed with throughput 𝜏1. 

(c) For sub regions 1a and 1b,  

We have 𝑓(𝑎(0)) = 𝑝3  because 𝑠2 ≥
1

𝑟+1
−

1

𝑟+1
𝑠1   𝑠2 ≥ 1 − 𝑟 + 𝑟𝑠1   𝑠2 <

1

𝑟+1
 

and 𝑠1 ≤
𝑟−1

𝑟
.  

    (I) For sub region 1b,  

Combined with case (A) and case (B)(a), the orbit 𝑝2 → 𝑓(𝑝2): 𝑝3 →

𝑓(𝑝3): 𝑏1 → 𝑓(𝑏1): 𝑝1 → ⋯  or 𝑏2 → 𝑓(𝑏2): 𝑝3 → 𝑓(𝑝3): 𝑏1 → 𝑓(𝑏1): 𝑝1 → ⋯ 

is obtained. 

       ——In this case, 𝜃1 is constructed with throughput 𝜏1. 

    (II) For sub region 1a, 

Combined with case (A) and case (B)(b), the orbit 𝑝2 → 𝑓(𝑝2): 𝑝3 →

𝑓(𝑝3): 𝑝1 → 𝑓(𝑝1): 𝑝1 → ⋯  or 𝑏2 → 𝑓(𝑏2): 𝑝3 → 𝑓(𝑝3): 𝑝1 → 𝑓(𝑝1): 𝑝1 →

⋯ is obtained. 

——In this case, 𝜃1 is constructed with throughput 𝜏1. 

(d) For sub regions 1c and 1h,  

We have 𝑓(𝑎(0)) = 𝑝1  because 𝑠2 ≥
1

𝑟+1
−

1

𝑟+1
𝑠1, 𝑠2 ≥ 1 − 𝑟 + 𝑟𝑠1, 𝑠2 <

1

𝑟+1
 

and 𝑠1 >
𝑟−1

𝑟
 . Combined with case (A), the orbit 𝑝2 → 𝑓(𝑝2): 𝑝1 →

𝑓(𝑝1): 𝑝1 → ⋯ or 𝑏2 → 𝑓(𝑏2): 𝑝1 → 𝑓(𝑝1): 𝑝1 → ⋯ is obtained. 

——In this case, 𝜃1 is constructed with throughput 𝜏1. 
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Therefore, given any initial iterate 𝑎(0), the cycle in Region 1 is 𝜃1. Similarly, we 

conclude that given any 𝑎(0), the cycles in Regions 2 and 3 are 𝜃2 and 𝜃3, respectively. 

Region 4, This region is partitioned into two mutually exclusive sub regions 4a and 

4b, by line 𝑙3. We construct cycles by tracking all feasible initial iterates 𝑎(0) in each 

sub region. 

(A) If 𝑎(0) ∈ {𝑝1, 𝑏1},  

For both sub regions 4a and 4b, we have 𝑓(𝑎(0)) = 𝑝1 because 𝑠1 ≥
1

𝑟+1
. Thus, the 

orbit 𝑝1 → 𝑓(𝑝1): 𝑝1 → ⋯ or 𝑏1 → 𝑓(𝑏1): 𝑝1 → ⋯ is obtained. 

——In this case, 𝜃1 is constructed with throughput 𝜏1. 

(B) If 𝑎(0) ∈ {𝑝2, 𝑏2},  

For both sub regions 4a and 4b, we have 𝑓(𝑎(0)) = 𝑝2 because 𝑠2 ≥
1

𝑟+1
. Thus, the 

orbit 𝑝2 → 𝑓(𝑝2): 𝑝2… or 𝑏2 → 𝑓(𝑏2): 𝑝2… is obtained. 

——In this case, 𝜃2 is constructed with throughput 𝜏2. 

(C) If 𝑎(0) ∈ {𝑝3, 𝑏3},  

(a) For sub region 4a,  

We have 𝑓(𝑎(0)) = 𝑏1 because 𝑠2 > 1 −
𝑟+1

𝑟
𝑠1. Combined with case (A), the 

orbit 𝑝3 → 𝑓(𝑝3): 𝑏1 → 𝑓(𝑏1): 𝑝1 → ⋯  or 𝑏3 → 𝑓(𝑏3): 𝑏1 → 𝑓(𝑏1): 𝑝1 → ⋯  is 

obtained. 

——In this case, 𝜃1 is constructed with throughput 𝜏1. 

(b) For sub region 4b, 

We have 𝑓(𝑎(0)) = 𝑝1  because 𝑠2 ≤ 1 −
𝑟+1

𝑟
𝑠1   𝑠2 ≤

𝑟

𝑟+1
−

1

𝑟+1
𝑠1   𝑠1 + 𝑠2 >

𝑟

𝑟+1
  and 𝑠2 ≤

𝑟−1

𝑟
 . Combined with case (A), the orbit 𝑝3 → 𝑓(𝑝3): 𝑝1 →

𝑓(𝑝1): 𝑝1 → ⋯or 𝑏3 → 𝑓(𝑏3): 𝑝1 → 𝑓(𝑝1): 𝑝1 → ⋯ is obtained. 

——In this case, 𝜃1 is constructed with throughput 𝜏1. 

Therefore, in Region 4, if 𝑎(0) ∈ {𝑝1, 𝑝3, 𝑏1, 𝑏3}, the cycle is 𝜃1; if 𝑎(0) ∈ {𝑝2, 𝑏2}, the 

cycle is 𝜃2 . Similarly, in Region 5, if 𝑎(0) ∈ {𝑝1, 𝑝2, 𝑏1, 𝑏2} , the cycle is 𝜃2 ; if 𝑎(0) ∈

{𝑝3, 𝑏3}, the cycle is 𝜃3. In Region 6, if 𝑎(0) ∈ {𝑝2, 𝑝3, 𝑏2, 𝑏3}, the cycle is 𝜃3; if 𝑎(0) ∈

{𝑝1, 𝑏1}, the cycle is 𝜃1. 

Region 7, This region will never intersect with lines 𝑙1~𝑙9.  

 (A) If 𝑎(0) ∈ {𝑝1, 𝑏1},  

For region 7, we have 𝑓(𝑎(0)) = 𝑝1 because 𝑠1 ≥
1

𝑟+1
. As a result, the orbit 𝑝1 →

𝑓(𝑝1): 𝑝1 → ⋯ or 𝑏1 → 𝑓(𝑏1): 𝑝1 → ⋯ is obtained. 

——In this case, 𝜃1 is constructed with throughput 𝜏1. 

(B) If 𝑎(0) ∈ {𝑝2, 𝑏2},  
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For region 7, we have 𝑓(𝑎(0)) = 𝑝2  because 𝑠2 ≥
1

𝑟+1
 . Thus, the orbit 𝑝2 →

𝑓(𝑝2): 𝑝2 → ⋯ or 𝑏2 → 𝑓(𝑏2): 𝑝2 → ⋯ is obtained. 

——In this case, 𝜃2 is constructed with throughput 𝜏2. 

(C) If 𝑎(0) ∈ {𝑝3, 𝑏3},  

For region 7, we have 𝑓(𝑎(0)) = 𝑝3 because 𝑠1 + 𝑠2 ≤
𝑟

𝑟+1
. Thus, the orbit 𝑝3 →

𝑓(𝑝3): 𝑝3 → ⋯ or 𝑏3 → 𝑓(𝑏3): 𝑝3 → ⋯ is obtained. 

——In this case, 𝜃3 is constructed with throughput 𝜏3. 

Therefore, for Region 7, if 𝑎(0) ∈ {𝑝1, 𝑏1}, the cycle is 𝜃1; if 𝑎(0) ∈ {𝑝2, 𝑏2}, the cycle 

is 𝜃2; if 𝑎(0) ∈ {𝑝3, 𝑏3}, the cycle is 𝜃3. 

In the cycles 𝜃1   𝜃2  and 𝜃3    𝑐2  never occurs. Worker 2 consistently works on a 

unique station. Correspondingly, for 𝜃1 , the throughput is 𝜏1 = 𝑣2/𝑠1 ; for 𝜃2 , the 

throughput is 𝜏2 = 𝑣2/𝑠2; for 𝜃3, the throughput is 𝜏1 = 𝑣2/𝑠3. □ 

 

 Proof of THEOREM 2. 

There are three exclusive cases. 

Case (1): 𝑎(0) = 𝑏1 𝑜𝑟 𝑝1. 

(A) In Figure 4, for region 1, 4, 6, and 7, the cycle is 𝜃1, and its throughput is 𝜏1. 

Given the velocity of worker 2, 𝑣2, the throughput 𝜏1 increases as the work 

amount on station 1, 𝑠1, decreases. When 𝑠1 =
1

𝑟+1
, the maximal throughput is 

achieved, which is 
𝑣2

𝑠1
=

𝑣2

1/(𝑟+1)
= 𝑣1 + 𝑣2.  

(B) For regions 2 and 5, the cycle is 𝜃2, and its throughput is 𝜏2. Given the velocity 

of worker 2, 𝑣2, the throughput 𝜏2 increases as the work amount on station 

2, 𝑠2, decreases. When s2 =
1

𝑟+1
, the maximal throughput is achieved, which 

is 
𝑣2

𝑠2
=

𝑣2

1/(𝑟+1)
= 𝑣1 + 𝑣2.  

(C) For region 3, the cycle is 𝜃3, and its throughput is 𝜏3. Given the velocity of 

worker 2, 𝑣2, the throughput 𝜏3 increases the work amount on station 3, 𝑠3, 

decreases. When 𝑠3 =
𝑟−1

𝑟+1
⟺ 1− 𝑠3 = 𝑠1 + 𝑠2 =

2

𝑟+1
, the maximal throughput 

is achieved, which is 
𝑣2

𝑠3
=

𝑣2

(𝑟−1)/(𝑟+1)
< 𝑣1 + 𝑣2 because 𝑟 ≥ 2. 

Therefore, if the initial iterates 𝑎(0) = 𝑏1 𝑜𝑟 𝑝1 , the maximal throughput is 

achieved when 𝑠1 =
1

𝑟+1
; or s2 =

1

𝑟+1
 and 0 < s1 <

1

𝑟+1
. In this case, the maximal 

throughput is 𝑣1 + 𝑣2. 

  Using the same method as described for Case (1), the maximal throughput for 
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Case (2) and Case (3) can be obtained. 

For Case (2), the maximal throughput is achieved when s2 =
1

𝑟+1
; or s3 =

1

𝑟+1
⟺

s1 + s2 =
𝑟

𝑟+1
 and 0 < s2 <

1

𝑟+1
. In this case, the maximal throughput is 𝑣1 + 𝑣2. 

For Case (3), the maximal throughput is achieved when s3 =
1

𝑟+1
⟺ s1 + s2 =

𝑟

𝑟+1
; 

or s1 =
1

𝑟+1
 and 0 < s3 <

1

𝑟+1
. In this case, the maximal throughput is 𝑣1 + 𝑣2. □ 

 

 Proof of LEMMA 5. 

We construct the function 𝑓  separately for the following three cases: (A)  𝑎(𝑡) ∈

{𝑝1, 𝑏1} , (B)  𝑎
(𝑡) ∈ {𝑝2, 𝑏2} , and (C)  𝑎(𝑡) ∈ {𝑝3, 𝑏3} . We determine the next iterate 

𝑎(𝑡+1)  by considering all possible combinations of work content distributions on 

stations. 

 (A) 𝑎(𝑡) ∈ {𝑝1, 𝑏1} 

The positions where worker 1 and worker 2 are located immediately after 𝑝1 or 

𝑏1 are the end and the start of station 1, respectively. Since 𝑠1 <
𝑘−(𝑘−1)𝑟

𝑟+1
≤

1

𝑟+1
⟹

𝑠1

𝑣2
<
1−𝑠1

𝑣1
, worker 2 departs from the end of station 1 before worker 1 can complete 

an item and return to the start of station 1. 

(a) 𝑎(𝑡+1) = 𝑏2 if 𝑟𝑠1 < 𝑠2. 

If 𝑟𝑠1 < 𝑠2 ⟺
𝑠2

𝑣1
>
𝑠1

𝑣2
, worker 2 can reach the start of station 2 before worker 

1 finishes his work on station 2. Thus, 𝑏2 will occur. 

    (b) 𝑎(𝑡+1) = 𝑏3 if 𝑟𝑠1 ≥ 𝑠2, 𝑟𝑠1 + (𝑟 − 1)𝑠2 < 𝑠3. 

        If 𝑟𝑠1 ≥ 𝑠2, 𝑏2 will not occur. 

If  𝑟𝑠1 + (𝑟 − 1)𝑠2 < 𝑠3 ⟺
𝑠1+𝑠2

𝑣2
<
𝑠2+𝑠3

𝑣1
, worker 2 can reach the start of station 

3 before worker 1 finishes his work on station 3. Thus, 𝑏3 will occur. 

    (c) 𝑎(𝑡+1) = 𝑝2 if 𝑟𝑠1 ≥ 𝑠2, 𝑟𝑠1 + (𝑟 − 1)𝑠2 ≥ 𝑠3, 𝑠3 ≤ 𝛺(𝑘). 

If 𝑟𝑠1 ≥ 𝑠2 and 𝑟𝑠1 + (𝑟 − 1)𝑠2 ≥ 𝑠3, 𝑏2 and 𝑏3 will not occur. 

Since 𝑠1 < 𝛷(𝑘), 𝑠2 < 𝛷(𝑘)  and 𝑠3 < 𝛺(𝑘) , 𝑝1, 𝑝2  and 𝑝3  will not occur 

before worker 2 completes 𝑘 − 1 items and reaches the end of station 1.  

Assume the opposite; let 𝑗 be the index of that station where passing occurs 

before worker 2 completes 𝑘 − 1 items and then reaches the end of station 1. 

There are three exclusive cases: (1) 𝑗 = 1, (2) 𝑗 = 2 and (3) 𝑗 = 3.  

(1) 𝑗 = 1 

    The time for worker 1 to complete 𝑘′(𝑘′ ≤ 𝑘) items and then reach the 
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start of station 1 is 𝑡1 =
𝑠2+𝑠3+𝑘

′−1

𝑣1
 . The time for worker 2 to complete 

𝑘′ − 1 items and then reach the end of station 1 is 𝑡2 =
𝑠1+𝑠2+𝑠3+𝑘

′−2+𝑠1

𝑣2
. 

Since we assume that passing occurs on station 1, we have 𝑡1 ≤ 𝑡2 ⟹

𝑠1 ≥
𝑘′−(𝑘′−1)𝑟

𝑟+1
≥
𝑘−(𝑘−1)𝑟

𝑟+1
= 𝛷(𝑘), which contradicts 𝑠1 < 𝛷(𝑘). 

(2) 𝑗 = 2 

    The time for worker 1 to complete 𝑘′(𝑘′ ≤ 𝑘 − 1) items and then reach 

the start of station 2 is 𝑡1 =
𝑠2+𝑠3+𝑘

′−1+𝑠1

𝑣1
 . The time for worker 2 to 

complete 𝑘′ − 1  items and then reach the end of station 2 is 𝑡2 =

𝑠1+𝑠2+𝑠3+𝑘
′−2+𝑠1+𝑠2

𝑣2
. Since we assume that passing occurs on station 2, we 

have 𝑡1 ≤ 𝑡2 ⟹ 𝑠3 ≤
𝑟−1

𝑟
𝑘′ ≤

𝑟−1

𝑟
(𝑘 − 1) , which contradicts 𝑠3 = 1 −

𝑠1 − 𝑠2 > 1 − 2𝛷(𝑘) >
𝑟−1

𝑟
(𝑘 − 1). 

(3) 𝑗 = 3 

The time for worker 1 to complete 𝑘′(𝑘′ ≤ 𝑘 − 1) items and then reach 

the start of station 3 is 𝑡1 =
𝑠2+𝑠3+𝑘

′−1+𝑠1+𝑠2

𝑣1
 . The time for worker 2 to 

complete 𝑘′ − 1  items and then reach the end of station 3 is 𝑡2 =

𝑠1+𝑠2+𝑠3+𝑘
′−2+𝑠1+𝑠2+𝑠3

𝑣2
. Since we assume that passing occurs on station 3, 

we have 𝑡1 ≤ 𝑡2⟹ 𝑠2 ≤ 𝑘
′(𝑟 − 1) ≤ (𝑟 − 1)(𝑘 − 1)   which contradicts 

𝑠2 = 1 − 𝑠1 − 𝑠3 > 1 − 𝛷(𝑘) − 𝛺(𝑘) > (𝑟 − 1)(𝑘 − 1). 

If 𝑠3 ≤ 𝛺(𝑘) ⟺
𝑠2+𝑠3+𝑘−1+𝑠1

𝑣1
=

𝑘

𝑣1
≤
𝑘−𝑠3

𝑣2
=
𝑠1+𝑠2+𝑠3+𝑘−2+𝑠1+𝑠2

𝑣2
 , worker 1 can 

complete 𝑘 items and reach the start of station 2 before worker 2 completes 

𝑘 − 1 items and then reaches the end of station 2. Thus, 𝑝2 will occur. 

(d) 𝑎(𝑡+1) = 𝑝3 if 𝑟𝑠1 ≥ 𝑠2, 𝑟𝑠1 + (𝑟 − 1)𝑠2 ≥ 𝑠3, 𝑠3 > 𝛺(𝑘), 𝑠2 ≤ 𝑟𝛺(𝑘). 

If 𝑟𝑠1 ≥ 𝑠2 , 𝑟𝑠1 + (𝑟 − 1)𝑠2 ≥ 𝑠3  and  𝑠3 > 𝛺(𝑘),   𝑏2, 𝑏3, 𝑝1, 𝑝2  and 𝑝3  will 

not occur before worker 2 completes 𝑘 − 1 items and then reaches the end of 

station 2. 

If 𝑠2 ≤ 𝑟𝛺(𝑘) ⟺
𝑠2+𝑠3+𝑘−1+𝑠1+𝑠2

𝑣1
=
𝑘+𝑠2

𝑣1
≤

𝑘

𝑣2
=
𝑠1+𝑠2+𝑠3+𝑘−2+𝑠1+𝑠2+𝑠3

𝑣1
, worker 1 

can complete 𝑘 items and then reach the start of station 3 before worker 2 

completes 𝑘 − 1 items and then reaches the end of station 3. Thus, 𝑝3 will 

occur. 

(e)  𝑎(𝑡+1) = 𝑝1  if 𝑟𝑠1 ≥ 𝑠2 , 𝑟𝑠1 + (𝑟 − 1)𝑠2 ≥ 𝑠3 , 𝑠3 > 𝛺(𝑘) , 𝑠2 > 𝑟𝛺(𝑘) , 𝑠1 ≥
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𝛷(𝑘 + 1). 

If 𝑟𝑠1 > 𝑠2, 𝑟𝑠1 + (𝑟 − 1)𝑠2 > 𝑠3, 𝑠3 > 𝛺(𝑘), 𝑠2 > 𝑟𝛺(𝑘) , 𝑏2, 𝑏3, 𝑝1, 𝑝2  and 𝑝3  will 

not occur before worker 2 completes 𝑘 − 1 items and then reaches the end of station 

3. 

    If 𝑠1 ≥ 𝛷(𝑘 + 1) ⇔
𝑠2+𝑠3+𝑘

𝑣1
=
𝑘+1−𝑠1

𝑣1
≤
𝑘+𝑠1

𝑣2
=
𝑠1+𝑠2+𝑠3+𝑘−1+𝑠1

𝑣2
 , worker 1 can 

complete 𝑘 + 1 items and then reach the start of station 1 before worker 2 completes 

𝑘 items and reaches the end of station 1. Thus, 𝑝1 will occur. 

(f)  𝑎(𝑡+1) = 𝑝2  if 𝑟𝑠1 ≥ 𝑠2, 𝑟𝑠1 + (𝑟 − 1)𝑠2 ≥ 𝑠3, 𝑠3 > 𝛺(𝑘), 𝑠2 > 𝑟𝛺(𝑘), 𝑠1 <

𝛷(𝑘 + 1), 𝑠2 ≥ 𝛷(𝑘 + 1). 

If 𝑟𝑠1 ≥ 𝑠2, 𝑟𝑠1 + (𝑟 − 1)𝑠2 ≥ 𝑠3, 𝑠3 ≥ 𝛺(𝑘), 𝑠2 > 𝑟𝛺(𝑘)  and  𝑠1 < 𝛷(𝑘 + 1) , 

𝑏2, 𝑏3, 𝑝1, 𝑝2 and 𝑝3 will not occur before worker 2 completes 𝑘 items and 

then reaches the end of station 1. 

If 𝑠1 < 𝛷(𝑘 + 1) and 𝑠2 < 𝑟𝑠1 , we have 𝑠3 = 1 − 𝑠1 − 𝑠2 > (𝑟 − 1)𝑘 >

𝑟−1

𝑟
(𝑘 + 1) ⟹

𝑠2+𝑠3+𝑘+𝑠1

𝑣1
<
𝑠1+𝑠2+𝑠3+𝑘−1+𝑠1+𝑠2

𝑣2
 . Worker 1 can complete k+1 

items and then reach the start of station 2 before worker 2 completes k items 

and reaches the end of station 2. Thus, 𝑝2 will occur. 

    (g)  𝑎(𝑡+1) = 𝑝3  if 𝑟𝑠1 ≥ 𝑠2, 𝑟𝑠1 + (𝑟 − 1)𝑠2 ≥ 𝑠3, 𝑠3 > 𝛺(𝑘), 𝑠2 > 𝑟𝛺(𝑘), 𝑠1 <

𝛷(𝑘 + 1), 𝑠2 < 𝛷(𝑘 + 1), 𝑠3 ≥ 𝛷(𝑘 + 1). 

        If 𝑟𝑠1 ≥ 𝑠2, 𝑟𝑠1 + (𝑟 − 1)𝑠2 ≥ 𝑠3, 𝑠3 > 𝛺(𝑘), 𝑠2 > 𝑟𝛺(𝑘), 𝑠1 < 𝛷(𝑘 + 1), 𝑠2 < 

𝛷(𝑘 + 1) , 𝑏2, 𝑏3, 𝑝1, 𝑝2  and 𝑝3  will not occur before worker 2 completes 𝑘 

items and then reaches the end of station 2. 

If 𝑠3 ≥ 𝛷(𝑘 + 1)  and 𝑟𝑠1 ≥ 𝑠2 , we have 𝑠2 ≤ (𝑘 + 1)(𝑟 − 1) ⟹

𝑠2+𝑠3+𝑘+𝑠1+𝑠2

𝑣1
≤
𝑠1+𝑠2+𝑠3+𝑘−1+𝑠1+𝑠2+𝑠3

𝑣2
. Worker 1 can complete 𝑘 + 1 items and 

then reach the start of station 3 before worker 2 completes k items and reaches 

the end of station 3. Thus, 𝑝3 will occur. 

Using the same method as described for case (A), the function 𝑓 for case (B) and 

case (C) can be constructed. □ 

 

 Proof of LEMMA 6. 

We define the following twelve lines 𝑙1~𝑙15 , as shown in Figure A.2. Each line 

represents some iterate conditions of the function 𝑎(𝑡+1) = 𝑓(𝑎(𝑡)) for 𝐷(𝑘)  𝑘 = 𝑘∗ −

1. Let 

𝑙1: 𝑠2 = 𝑟𝑠1; 𝑙2: 𝑠2 =
1

𝑟+1
−

1

𝑟+1
𝑠1 ⟺ 𝑟𝑠2 = 𝑠3; 𝑙3: 𝑠2 = 1 −

𝑟+1

𝑟
𝑠1 ⟺ 𝑟𝑠3 = 𝑠1;  

𝑙4: 𝑠2 =
1

𝑟
−
𝑟+1

𝑟
𝑠1⟺ 𝑟𝑠1 + (𝑟 − 1)𝑠2 = 𝑠3;  

𝑙5: 𝑠2 = 1 − 𝑟 + 𝑟𝑠1 ⟺ 𝑟𝑠2 + (𝑟 − 1)𝑠3 = 𝑠1; 
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𝑙6: 𝑠2 =
𝑟

𝑟+1
−

1

𝑟+1
𝑠1 ⟺ 𝑟𝑠3 + (𝑟 − 1)𝑠1 = 𝑠2;  

𝑙7: 𝑠1 =
𝑘+1−𝑘𝑟

𝑟+1
⟺ 𝑠1 = 𝛷(𝑘 + 1); 𝑙8: 𝑠2 =

𝑘+1−𝑘𝑟

𝑟+1
⟺ 𝑠2 = 𝛷(𝑘 + 1);  

𝑙9: 𝑠2 =
(𝑘+1)𝑟−𝑘

𝑟+1
− 𝑠1 ⟺ 𝑠3 = 𝛷(𝑘 + 1);  

𝑙10: 𝑠2 =
𝑘−(𝑘−1)𝑟

𝑟
− 𝑠1⟺ 𝑠3 = 𝛺(𝑘); 𝑙11: 𝑠2 = 𝑘 + 1 − 𝑘𝑟 − 𝑠1 ⟺ 𝑠3 = 𝑟𝛺(𝑘);  

𝑙12: 𝑠1 =
𝑘(𝑟−1)

𝑟
⟺ 𝑠1 = 𝛺(𝑘); 𝑙13: 𝑠1 = 𝑘(𝑟 − 1) ⟺ 𝑠1 = 𝑟𝛺(𝑘);  

𝑙14: 𝑠2 =
𝑘(𝑟−1)

𝑟
⟺ 𝑠3 = 𝛺(𝑘); 𝑙15: 𝑠2 = 𝑘(𝑟 − 1) ⟺ 𝑠2 = 𝑟𝛺(𝑘). 

We partition the entire feasible work content area into twelve mutually exclusive 

regions as Figure 8. 𝑙1~𝑙15  intersect with 𝐷(𝑘), 𝑘 = 𝑘∗ − 1  (see Figure A.2), which 

means distinct stations’ distributions. We study the function 𝑎(𝑡+1) = 𝑓(𝑎(𝑡))  to 

determine the cycles and throughputs of the system in each region separately. Let 

𝜃1(𝑘) = 𝑝1(𝑐1𝑐2)
𝑘−1𝑐1𝑝2(𝑐1𝑐2)

𝑘𝑐1𝑝1  𝜏1(𝑘) =
4𝑘

2𝑘−1+𝑠1+𝑠2
× 𝑣2   

𝜃2(𝑘) = 𝑝2(𝑐1𝑐2)
𝑘−1𝑐1𝑝3(𝑐1𝑐2)

𝑘𝑐1𝑝2  𝜏2(𝑘) =
4𝑘

2𝑘−1+𝑠2+𝑠3
× 𝑣2   

𝜃3(𝑘) = 𝑝1(𝑐1𝑐2)
𝑘−1𝑐1𝑝3(𝑐1𝑐2)

𝑘𝑐1𝑝1  𝜏3(𝑘) =
4𝑘

2𝑘−1+𝑠1+𝑠3
× 𝑣2  

𝜃4(𝑘) = 𝑝1𝑏2(𝑐1𝑐2)
𝑘𝑐1𝑝1  𝜏4(𝑘) =

2𝑘+1

𝑘+𝑠2/𝑟
× 𝑣2   

𝜃5(𝑘) = 𝑝2𝑏3(𝑐1𝑐2)
𝑘𝑐1𝑝2  𝜏5(𝑘) =

2𝑘+1

𝑘+𝑠3/𝑟
× 𝑣2  

𝜃6(𝑘) = 𝑝3𝑐1𝑐2𝑏1(𝑐1𝑐2)
𝑘−1𝑐1𝑝3  𝜏6(𝑘) =

2𝑘+1

𝑘+𝑠1/𝑟
× 𝑣2  

𝜃7(𝑘) = 𝑝1(𝑐1𝑐2)
𝑘𝑐1𝑝1  𝜏7(𝑘) =

2𝑘+1

𝑘+𝑠1
× 𝑣2  

𝜃8(𝑘) = 𝑝2(𝑐1𝑐2)
𝑘𝑐1𝑝2  𝜏8(𝑘) =

2𝑘+1

𝑘+𝑠2
× 𝑣2  

𝜃9(𝑘) = 𝑝3(𝑐1𝑐2)
𝑘𝑐1𝑝3  𝜏9(𝑘) =

2𝑘+1

𝑘+𝑠3
× 𝑣2. 
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Figure A.2 Twelve regions intersected with lines 𝑙1~𝑙15 for 𝐷(𝑘)  𝑘 = 𝑘∗ − 1. 

 

Region k1, The region will never interact with line 𝑙1~𝑙6. 

(A) If 𝑎(0) ∈ {𝑝1, 𝑏1}, 

  For region k1, we have 𝑓(𝑎(0)) = 𝑝2  because 𝑟𝑠1 ≥ 𝑠2, 𝑠2 ≥
1

𝑟
−
𝑟+1

𝑟
𝑠1  and 𝑠1 +

𝑠2 ≥
𝑘−(𝑘−1)𝑟

𝑟
. 

(B) If 𝑎(0) ∈ {𝑝2, 𝑏2}, 

For region k1, we have 𝑓(𝑎(0)) = 𝑝1  because 𝑠2 ≥
1

𝑟+1
−

1

𝑟+1
𝑠1, 𝑠2 ≥ 1 − 𝑟 +

𝑟𝑠1, 𝑠1 > 

𝑘(𝑟−1)

𝑟
 and 𝑠1 + 𝑠2 ≤ 𝑘 + 1 − 𝑘𝑟. 

(C) If 𝑎(0) ∈ {𝑝3, 𝑏3}, 

    For region k1, we have 𝑓(𝑎(0)) = 𝑏1 because 𝑠2 > 1 −
𝑟+1

𝑟
𝑠1. 

Combined with case (A), case (B), and case (C), we have the following feasible orbits: 

If 𝑎(0) ∈ {𝑝1, 𝑏1} , the orbit 𝑝1 → 𝑓(𝑝1): 𝑝2 → 𝑓(𝑝2): 𝑝1 → ⋯  or 𝑏1 → 𝑓(𝑏1): 𝑝2 →

𝑓(𝑝2): 𝑝1 → ⋯ is obtained; If 𝑎(0) ∈ {𝑝2, 𝑏2}, the orbit 𝑝2 → 𝑓(𝑝2): 𝑝1 → 𝑓(𝑝1): 𝑝2 → ⋯ 

or 𝑏2 → 𝑓(𝑏2): 𝑝1 → 𝑓(𝑝1): 𝑝2 → ⋯  is obtained; If 𝑎(0) ∈ {𝑝3, 𝑏3} , the orbit 𝑝3 →

𝑓(𝑝3): 𝑏1 → 𝑓(𝑏1): 𝑝2 → 𝑓(𝑝2): 𝑝1 → ⋯  or 𝑏3 → 𝑓(𝑏3): 𝑏1 → 𝑓(𝑏1): 𝑝2 → 𝑓(𝑝2): 𝑝1 → ⋯ 

is obtained. In all the above three cases, 𝜃1(𝑘) is constructed. Similarly, the cycles in 

Region k2 and Region k3 are 𝜃2(𝑘) and 𝜃3(𝑘), respectively. 

Region k4, The region will never interact with line 𝑙1~𝑙6. 

(A) If 𝑎(0) ∈ {𝑝1, 𝑏1},  

For region k4, we have 𝑓(𝑎(0)) = 𝑏2 because 𝑠2 > 𝑟𝑠1. 
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(B) If 𝑎(0) ∈ {𝑝2, 𝑏2},  

    For region k4, we have 𝑓(𝑎(0)) = 𝑝1  because 𝑠2 ≥
1

𝑟+1
−

1

𝑟+1
𝑠1, 𝑠2 ≥ 1 − 𝑟 +

𝑟𝑠1, 𝑠1 >
𝑘(𝑟−1)

𝑟
 and 𝑠1 + 𝑠2 ≥ 𝑘 + 1 − 𝑘𝑟. 

(C) If 𝑎(0) ∈ {𝑝3, 𝑏3},  

For region k4, we have 𝑓(𝑎(0)) = 𝑏1 because 𝑠2 > 1 −
𝑟+1

𝑟
𝑠1. 

Combined with case (A), case (B), and case (C), we have the following feasible orbits. 

If 𝑎(0) ∈ {𝑝1, 𝑏1} , the orbit 𝑝1 → 𝑓(𝑝1): 𝑏2 → 𝑓(𝑏2): 𝑝1 → ⋯  or 𝑏1 → 𝑓(𝑏1): 𝑏2 →

𝑓(𝑏2): 𝑝1 → ⋯ is obtained; If 𝑎(0) ∈ {𝑝2, 𝑏2}, the orbit 𝑝2 → 𝑓(𝑝2): 𝑝1 → 𝑓(𝑝1): 𝑏2 → ⋯  

or 𝑏2 → 𝑓(𝑏2): 𝑝1 → 𝑓(𝑝1): 𝑏2 → ⋯  is obtained; If 𝑎(0) ∈ {𝑝3, 𝑏3} , the orbit 𝑝3 →

𝑓(𝑝3): 𝑏1 → 𝑓(𝑏1): 𝑏2 → 𝑓(𝑏2): 𝑝1 → ⋯  or 𝑏3 → 𝑓(𝑏3): 𝑏1 → 𝑓(𝑏1): 𝑏2 → 𝑓(𝑏2): 𝑝1 → ⋯  

is obtained. In the above three cases, 𝜃4(𝑘)  is constructed. Similarly, the cycles in 

Region k5 and Region k6 are 𝜃5(𝑘) and 𝜃6(𝑘), respectively. 

Region k7, This region is partitioned into seven sub regions 7a~7g by lines 𝑙2, 𝑙3, 𝑙5 

and 𝑙8. We construct cycles by tracking all feasible initial behaviors in each sub region.  

(A) If 𝑎(0) ∈ {𝑝1, 𝑏1}, 

For all seven sub regions, we have 𝑓(𝑎(0)) = 𝑝1  because 𝑟𝑠1 ≥ 𝑠2, 𝑠2 ≥
1

𝑟
−

𝑟+1

𝑟
𝑠1, 𝑠1 + 𝑠2 <

𝑘−(𝑘−1)𝑟

𝑟
, 𝑠2 > 𝑘(𝑟 − 1)  and 𝑠1 ≥

𝑘+1−𝑘𝑟

𝑟+1
.  Thus, the orbit 𝑝1 →

𝑓(𝑝1): 𝑝1 → ⋯ or 𝑏1 → 𝑓(𝑏1): 𝑝1 → ⋯ is obtained.  

——In this case, 𝜃7(𝑘) is constructed in region k7. 

(B) If 𝑎(0) ∈ {𝑝3, 𝑏3},  

(a) For sub regions 7c, 7d, 7e, 7g, 

We have 𝑓(𝑎(0)) = 𝑏1 because 𝑠2 > 1 −
𝑟+1

𝑟
𝑠1. Combined with case (A), the 

orbit 𝑝3 → 𝑓(𝑝3): 𝑏1 → 𝑓(𝑏1): 𝑝1 → ⋯  or 𝑏3 → 𝑓(𝑏3): 𝑏1 → 𝑓(𝑏1): 𝑝1 → ⋯  is 

obtained. 

——In this case, 𝜃7(𝑘) is constructed. 

(b) For sub regions 7a, 7b and 7f,  

We have 𝑓(𝑎(0)) = 𝑝1  because 𝑠2 ≤ 1 −
𝑟+1

𝑟
𝑠1, 𝑠2 ≥

𝑟

𝑟+1
−

1

𝑟+1
𝑠1, 𝑠2 >

𝑘(𝑟−1)

𝑟
, 𝑠1 > 𝑘(𝑟 − 1), 𝑠1 + 𝑠2 >

(𝑘+1)𝑟−𝑘

𝑟+1
 and 𝑠1 ≥

𝑘+1−𝑘𝑟

𝑟+1
. Combined with case 

(A), the orbit 𝑝3 → 𝑓(𝑝3): 𝑝1 → 𝑓(𝑝1): 𝑝1 → ⋯ or 𝑏3 → 𝑓(𝑏3): 𝑝1 → 𝑓(𝑝1): 𝑝1 →

⋯ is obtained. 

——In this case, 𝜃7(𝑘) is constructed. 

(C) If 𝑎(0) ∈ {𝑝2, 𝑏2}, 

(a) For sub regions 7a, 7f, 7e,  
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    We have 𝑓(𝑎(0)) = 𝑏3 because 𝑠2 <
1

𝑟+1
−

1

𝑟+1
𝑠1. 

    (I) For sub region 7e, 

       Combined with case (A) and case (B)(a), the orbit 𝑝2 → 𝑓(𝑝2): 𝑏3 →

𝑓(𝑏3): 𝑏1 → 𝑓(𝑏1): 𝑝1 → ⋯ or 𝑏2 → 𝑓(𝑏2): 𝑏3 → 𝑓(𝑏3): 𝑏1 → 𝑓(𝑏1): 𝑝1 → ⋯ is obtained. 

——In this case, 𝜃7(𝑘) is constructed. 

(II) For sub regions 7a and 7f 

Combined with case (A) and case (B)(b), the orbit 𝑝2 → 𝑓(𝑝2): 𝑏3 →

𝑓(𝑏3): 𝑝1 → 𝑓(𝑝1): 𝑝1 → ⋯ or 𝑏2 → 𝑓(𝑏2): 𝑏3 → 𝑓(𝑏3): 𝑝1 → 𝑓(𝑝1): 𝑝1 → ⋯ is obtained. 

——In this case, 𝜃7(𝑘) is constructed. 

(b) For sub region 7d, 

We have 𝑓(𝑎(0)) = 𝑏1  because 𝑠2 ≥
1

𝑟+1
−

1

𝑟+1
𝑠1  and 𝑠2 < 1 − 𝑟 + 𝑟𝑠1 . 

Combined with case (A), the orbit 𝑝2 → 𝑓(𝑝2): 𝑏1 → 𝑓(𝑏1): 𝑝1 → ⋯  or 𝑏2 →

𝑓(𝑏2): 𝑏1 → 𝑓(𝑏1): 𝑝1 → ⋯ is obtained.  

——In this case, 𝜃7(𝑘) is constructed. 

(c) For sub region 7g,  

We have 𝑓(𝑎(0)) = 𝑝1  because 𝑠2 ≥
1

𝑟+1
−

1

𝑟+1
𝑠1, 𝑠2 ≥ 1 − 𝑟 + 𝑟𝑠1, 𝑠1 >

𝑘(𝑟−1)

𝑟
 

and 𝑠1 + 𝑠2 ≥ 𝑘 + 1 − 𝑘𝑟. Combined with case (A), the orbit 𝑝2 → 𝑓(𝑝2): 𝑝1 →

𝑓(𝑝1): 𝑝1 → ⋯ or 𝑏2 → 𝑓(𝑏2): 𝑝1 → 𝑓(𝑝1): 𝑝1 → ⋯ is obtained. 

——In this case, 𝜃7(𝑘) is constructed. 

(e) For sub regions 7b and 7c,  

        We have 𝑓(𝑎(0)) = 𝑝1  because 𝑠2 ≥
1

𝑟+1
−

1

𝑟+1
𝑠1, 𝑠2 ≥ 1 − 𝑟 + 𝑟𝑠1, 𝑠1 >

𝑘(𝑟−1)

𝑟
, 𝑠1 + 𝑠2 < 𝑘 + 1 − 𝑘𝑟, 𝑠2 <

𝑘+1−𝑘𝑟

𝑟+1
  and 𝑠3 ≤

𝑘+1−𝑘𝑟

𝑟+1
 . Combined with 

case (A), the orbit 𝑝2 → 𝑓(𝑝2): 𝑝1 → 𝑓(𝑝1): 𝑝1 → ⋯  or 𝑏2 → 𝑓(𝑏2): 𝑝1 →

𝑓(𝑝1): 𝑝1 → ⋯ is obtained.  

——In this case, 𝜃7(𝑘) is constructed. 

Therefore, for Region k7, given any initial iterate, the cycle is 𝜃7(𝑘). Similarly, we 

conclude that given any initial iterate, the cycles in Region k8 and Region k9 are 𝜃8(𝑘) 

and 𝜃9(𝑘), respectively. 

Region k10, The region will never interact with line 𝑙1~𝑙6. 

(A) If 𝑎(0) ∈ {𝑝1, 𝑏1},  

We have 𝑓(𝑎(0)) = 𝑝1  because  𝑟𝑠1 ≥ 𝑠2, 𝑠2 ≥
1

𝑟
−
𝑟+1

𝑟
𝑠1, 𝑠1 + 𝑠2 <

𝑘−(𝑘−1)𝑟

𝑟
, 𝑠2 >

𝑘(𝑟 − 1)  and 𝑠1 ≥
𝑘+1−𝑘𝑟

𝑟+1
 . Thus, the orbit 𝑝1 → 𝑓(𝑝1): 𝑝1 → ⋯  or 𝑏1 →

𝑓(𝑏1): 𝑝1 → ⋯ is obtained.  
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——In this case, 𝜃7(𝑘) is constructed. 

(B) If 𝑎(0) ∈ {𝑝2, 𝑏2},  

We have 𝑓(𝑎(0)) = 𝑝2  because 𝑠2 ≥
1

𝑟+1
−

1

𝑟+1
𝑠1, 𝑠2 ≥ 1 − 𝑟 + 𝑟𝑠1, 𝑠1 >

𝑘(𝑟−1)

𝑟
, 𝑠1 + 𝑠2 < 𝑘 + 1 − 𝑘𝑟 and 𝑠2 ≥

𝑘+1−𝑘𝑟

𝑟+1
. Thus, the orbit 𝑝2 → 𝑓(𝑝2): 𝑝2 → ⋯ 

or 𝑏2 → 𝑓(𝑏2): 𝑝2 → ⋯ is obtained. 

——In this case, 𝜃8(𝑘) is constructed. 

(C) If 𝑎(0) ∈ {𝑝3, 𝑏3}, 

    We have 𝑓(𝑎(0)) = 𝑏1 because 𝑠2 > 1 −
𝑟+1

𝑟
𝑠1. Combined with case (A), the orbit 

𝑝3 → 𝑓(𝑝3): 𝑏1 → 𝑓(𝑏1): 𝑝1 → ⋯ or 𝑏3 → 𝑓(𝑏3): 𝑏1 → 𝑓(𝑏1): 𝑝1 → ⋯ is obtained. 

——In this case, 𝜃7(𝑘) is constructed. 

Therefore, if 𝑎(0) ∈ {𝑝1, 𝑝3, 𝑏1, 𝑏3} , the cycle in the region k10 is 𝜃7(𝑘) ; if 𝑎(0) ∈

{𝑝2, 𝑏2}, the cycle in the region is 𝜃8(𝑘). Similarly, if 𝑎(0) ∈ {𝑝1, 𝑝2, 𝑏1, 𝑏2}, the cycle in 

the region k11 is 𝜃8(𝑘) ; if 𝑎(0) ∈ {𝑝3, 𝑏3},  the cycle in the region is 𝜃9(𝑘).  If 𝑎(0) ∈

{𝑝2, 𝑝3, 𝑏2, 𝑏3}, the cycle in the region k12 is 𝜃9(𝑘); if 𝑎
(0) ∈ {𝑝1, 𝑏1}, the cycle in the 

region is 𝜃7(𝑘). 

In cycle 𝜃1(𝑘),  worker 1 assembles 2𝑘 + 1  items, and worker 2 assembles 2𝑘 − 1 

items. The total number of items completed by the two workers is 4𝑘, which takes 

time (2𝑘 − 1 + 𝑠1 + 𝑠2)/𝑣2, as worker 2 remains busy. Therefore, the throughput of 

the rotating seru is 𝜏1(𝑘) =
4𝑘

2𝑘−1+𝑠1+𝑠2
× 𝑣2. Similarly, we can obtain the corresponding 

throughputs of other cycles 𝜃1(𝑘)~ 𝜃9(𝑘). □ 

 

 Details of LEMMA 7. 

There are 15 sub regions formed based on the decreasing velocity ratios, as 

illustrated in Figure A.3. For example, if 𝛺(𝑘∗) ≥ 𝛷(𝑘∗) , only region k*0 exists; if 

𝛷(𝑘∗) > 𝛺(𝑘∗) > 1/3, four regions are present: k*0, k*1, k*2 and k*3. Region k*0, k*0’, 

and k*1~k*9 correspond to one cycle, while Region k*10~k*12 represent two feasible 

cycles; Region k*13 is associated with three feasible cycles. In addition to 

𝜃1(𝑘
∗)~𝜃9(𝑘

∗), two new feasible cycles appear in 𝐷(𝑘∗), which are: 

𝜃0(𝑘
∗) = 𝑝1(𝑐1𝑐2)

𝑘∗−1𝑐1𝑝2(𝑐1𝑐2)
𝑘∗−1𝑐1𝑝3(𝑐1𝑐2)

𝑘∗𝑐1𝑝1  𝜏0(𝑘
∗) =

6𝑘∗−1

3𝑘∗−1
× 𝑣2; 

𝜃0
′(𝑘∗) = 𝑝1(𝑐1𝑐2)

𝑘∗−1𝑐1𝑝3(𝑐1𝑐2)
𝑘∗𝑐1𝑝2(𝑐1𝑐2)

𝑘∗𝑐1𝑝1  𝜏0
′ (𝑘∗) =

6𝑘∗+1

3𝑘∗
× 𝑣2. 

Region k*0: The cycle is 𝜃0(𝑘
∗), and its throughput is 𝜏0(𝑘

∗).  

Region k*0’: The cycle is 𝜃0
′(𝑘∗), and its throughput is 𝜏0

′ (𝑘∗).  

Region k*1: The cycle is 𝜃1(𝑘
∗), and its throughput is 𝜏1(𝑘

∗). 

Region k*2: The cycle is 𝜃2(𝑘
∗), and its throughput is 𝜏2(𝑘

∗). 
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Region k*3: The cycle is 𝜃3(𝑘
∗), and its throughput is 𝜏3(𝑘

∗) 

Region k*4: The cycle is 𝜃4(𝑘
∗), and its throughput is 𝜏4(𝑘

∗). 

Region k*5: The cycle is 𝜃5(𝑘
∗), and its throughput is 𝜏5(𝑘

∗). 

Region k*6: The cycle is 𝜃6(𝑘
∗), and its throughput is 𝜏6(𝑘

∗). 

Region k*7: The cycle is 𝜃7(𝑘
∗), and its throughput is 𝜏7(𝑘

∗). 

Region k*8: The cycle is 𝜃8(𝑘
∗), and its throughput is 𝜏8(𝑘

∗). 

Region k*9: The cycle is 𝜃9(𝑘
∗), and its throughput is 𝜏9(𝑘

∗). 

Region k*10: The cycle is 𝜃7(𝑘
∗) or θ8(k

∗), and its throughput is 𝜏7(𝑘
∗) or 𝜏8(𝑘

∗). 

Region k*11: The cycle is 𝜃8(𝑘
∗) or θ9(k

∗), and its throughput is 𝜏8(𝑘
∗) or 𝜏9(𝑘

∗). 

Region k*12: The cycle is 𝜃7(𝑘
∗) or θ9(k

∗), and its throughput is 𝜏7(𝑘
∗) or 𝜏9(𝑘

∗). 

Region k*13: The cycle is 𝜃7(𝑘
∗), 𝜃8(𝑘

∗)  or 𝜃9(𝑘
∗) , and its throughput is 𝜏7(𝑘

∗) , 

𝜏8(𝑘
∗) or 𝜏9(𝑘

∗). □ 
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1
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(e) 𝛺(𝑘∗) =
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(The red lines mean the maximal throughput) 

Figure A.3. The evolution of 15 sub regions for 𝐷(𝑘∗). 

 

 Proof of THEOREM 3. 

Let δ1 =
𝑘+1−𝑘𝑟

𝑟+1
, δ2 = 𝑘(𝑟 − 1), δ3 =

𝑟(𝑘+1−𝑘𝑟)

𝑟+1
, and δ4 =

(2𝑘+1)(𝑟−1)

𝑟+1
. 

There are three exclusive cases. Case (1): 𝑎(0) = 𝑏1 𝑜𝑟 𝑝1; Case (2): 𝑎(0) = 𝑏2 𝑜𝑟 𝑝2; 

Case (3): 𝑎(0) = 𝑏3 𝑜𝑟 𝑝3. 

Case (1): 𝑎(0) = 𝑏1 𝑜𝑟 𝑝1. 

(A) For region k1, the cycle is 𝜃1(𝑘)  and its throughput is 𝜏1(𝑘). Given the velocity of 

worker 2 𝑣2  the throughput 𝜏1(𝑘) increases as the work amount on station 3 𝑠3, 

increases. In region k1, when s3 = δ2/𝑟 (𝑙10 in Figure 8), the maximal throughput 

is achieved, which is 
4𝑟

2𝑘−𝑘(𝑟−1)/𝑟
× 𝑣2 =

4𝑟

𝑟+1
× 𝑣2 < (𝑟 + 1) × 𝑣2 = 𝑣1 + 𝑣2. 

(B) For region k2, the cycle is 𝜃2(𝑘), and its throughput is 𝜏2(𝑘). Given the velocity of 

worker 2 𝑣2, the throughput 𝜏2(𝑘) increases as the work amount on station 1 𝑠1, 

increases. In region k1, when 𝑠1 = δ2/𝑟 (𝑙12 in Figure 8), the maximal throughput 

is achieved, which is 
4𝑟

2𝑘−𝑘(𝑟−1)/𝑟
× 𝑣2 =

4𝑟

𝑟+1
× 𝑣2 < (𝑟 + 1) × 𝑣2 = 𝑣1 + 𝑣2. 

(C) For region k3, the cycle is 𝜃3(𝑘), and its throughput is 𝜏3(𝑘). Given the velocity of 

worker 2 𝑣2, the throughput 𝜏3(𝑘) increases as the work amount on station 2 𝑠2, 

increases. In region k3, when s2 = δ2/𝑟 (𝑙14 in Figure 8), the maximal throughput 
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is achieved, which is 
4𝑟

2𝑘−𝑘(𝑟−1)/𝑟
× 𝑣2 =

4𝑟

𝑟+1
× 𝑣2 < (𝑟 + 1) × 𝑣2 = 𝑣1 + 𝑣2. 

(D) For region k4, the cycle is 𝜃4(𝑘), and its throughput is 𝜏4(𝑘). Given the velocities 

of the two workers 𝑣1  and 𝑣2   the throughput 𝜏4(𝑘)  increases as the work 

amount on station 2 𝑠2, decreases. In region k4, because s2 < δ3 ( the intersection 

of lines 𝑙11 and 𝑙1), 𝜏4(𝑘) <
2𝑘+1

𝑘−(𝑘+1−𝑘𝑟)/(𝑟+1)
× 𝑣2 = 𝑣1 + 𝑣2. 

(E) For region k5, the cycle is 𝜃5(𝑘), and its throughput is 𝜏5(𝑘). Given the velocities 

of the two workers 𝑣1  and 𝑣2 , the throughput 𝜏5(𝑘)  increases as the work 

amount on station 3 𝑠3, decreases. In region k5, because 𝑠3 < δ3( the intersection 

of lines 𝑙13 and 𝑙2), 𝜏5(𝑘) <
2𝑘+1

𝑘−(𝑘+1−𝑘𝑟)/(𝑟+1)
× 𝑣2 = 𝑣1 + 𝑣2. 

(F) For region k6, the cycle is 𝜃6(𝑘), and its throughput is 𝜏6(𝑘). Given the velocities 

of the two workers 𝑣1  and 𝑣2 , the throughput 𝜏6(𝑘)  increases as the work 

amount on station 1 𝑠1 , decreases. In region k6, because 𝑠1 <
𝑟(𝑘+1−𝑘𝑟)

𝑟+1
  ( the 

intersection of lines 𝑙15 and 𝑙3), 𝜏6(𝑘) <
2𝑘+1

𝑘−(𝑘+1−𝑘𝑟)/(𝑟+1)
× 𝑣2 = 𝑣1 + 𝑣2. 

(G) For region k7, the cycle is 𝜃7(𝑘), and its throughput is 𝜏7(𝑘). Given the velocities 

of the two workers 𝑣1  and 𝑣2 , the throughput 𝜏7(𝑘)  increases as the work 

amount on station 1 𝑠1, decreases. In region k7, when 𝑠1 = δ1 (𝑙7 in Figure 8), the 

maximal throughput is achieved, which is 
2𝑘+1

𝑘−(𝑘+1−𝑘𝑟)/(𝑟+1)
× 𝑣2 = 𝑣1 + 𝑣2. 

(H) For region k8, the cycle is 𝜃8(𝑘), and its throughput is 𝜏8(𝑘). Given the velocities 

of the two workers 𝑣1  and 𝑣2 , the throughput 𝜏8(𝑘)  increases as the work 

amount on station 2 𝑠2, decreases. In region k8, when 𝑠2 = δ1 (𝑙8 in Figure 8), the 

maximal throughput is achieved, which is 
2𝑘+1

𝑘−(𝑘+1−𝑘𝑟)/(𝑟+1)
× 𝑣2 = 𝑣1 + 𝑣2. 

(I) For region k9, the cycle is 𝜃9(𝑘), and its throughput is 𝜏9(𝑘). Given the velocities 

of the two workers 𝑣1  and 𝑣2 , the throughput 𝜏9(𝑘)  increases as the work 

amount on station 3 𝑠3, decreases. In region k9, when 𝑠3 = δ1 (𝑙9 in Figure 8), the 

maximal throughput is achieved, which is 
2𝑘+1

𝑘−(𝑘+1−𝑘𝑟)/(𝑟+1)
× 𝑣2 = 𝑣1 + 𝑣2. 

(J) For region k10, the cycle is 𝜃7(𝑘), and its throughput is 𝜏7(𝑘). Given the velocities 

of the two workers 𝑣1  and 𝑣2 , the throughput 𝜏7(𝑘)  increases as the work 

amount on station 1 𝑠1, decreases. In region k10, when 𝑠1 = δ1 (𝑙7 in Figure 8), 

the maximal throughput is achieved, which is 
2𝑘+1

𝑘−(𝑘+1−𝑘𝑟)/(𝑟+1)
× 𝑣2 = 𝑣1 + 𝑣2. 

(K) For region k11, the cycle is 𝜃8(𝑘), and its throughput is 𝜏8(𝑘). Given the velocities 

of the two workers 𝑣1  and 𝑣2 , the throughput 𝜏8(𝑘)  increases as the work 

amount on station 2 s2, decreases. In region k11, when s2 = δ1 (𝑙8 in Figure 8), 
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the maximal throughput is achieved, which is 
2𝑘+1

𝑘−(𝑘+1−𝑘𝑟)/(𝑟+1)
× 𝑣2 = 𝑣1 + 𝑣2. 

(L) For region k12, the cycle is 𝜃7(𝑘), and its throughput is 𝜏7(𝑘). Given the velocities 

of the two workers 𝑣1  and 𝑣2,  the throughput 𝜏7(𝑘)  increases as the work 

amount on station 1 s1, decreases. In region k10, when s1 = δ1 (𝑙7 in Figure 8), 

the maximal throughput is achieved, which is 
2𝑘+1

𝑘−(𝑘+1−𝑘𝑟)/(𝑟+1)
× 𝑣2 = 𝑣1 + 𝑣2. 

Combined with (A)-(L), if the initial iterate 𝑎(0) = 𝑏1 𝑜𝑟 𝑝1, when 𝑠1 = δ1 (δ2 ≤ 𝑠2 ≤

δ3)   𝑠2 = δ1(δ2 ≤ 𝑠1 ≤ δ1)  or s3 = 𝛿1(𝛿4 ≤ 𝑠1 ≤ 𝛿1) , the maximal throughput is 

achieved, which is 𝑣1 + 𝑣2. 

Case (2): 𝑎(0) = 𝑏2 𝑜𝑟 𝑝2. 

Similarly, if the initial iterate 𝑎(0) = 𝑏2 𝑜𝑟 𝑝2 , when 𝑠2 = 𝛿1  (δ2 ≤ s3 ≤ δ3) , 𝑠3 =

𝛿1(δ2 ≤ s2 ≤ 𝛿1) or 𝑠1 = 𝛿1(δ4 ≤ 𝑠2 ≤ 𝛿1), the maximal throughput is achieved, which 

is 𝑣1 + 𝑣2. 

Case (3): 𝑎(0) = 𝑏3 𝑜𝑟 𝑝3. 

Similarly, if the initial iterate 𝑎(0) = 𝑏3 𝑜𝑟 𝑝3 , when 𝑠3 = 𝛿1  (δ2 ≤ 𝑠1 ≤ δ3) , 𝑠1 =

𝛿1(δ2 ≤ s3 ≤ 𝛿1) or 𝑠2 = 𝛿1(δ4 ≤ 𝑠1 ≤ 𝛿1), the maximal throughput is achieved, which 

is 𝑣1 + 𝑣2. □ 

 

 Proof of LEMMA 8. 

The immediate positions of workers 1 and 2 after 𝑝𝑖 are the end and the start of 

station 𝑖  respectively. 

First, we prove that if 𝑟 ≥ 2 and the cycle is 𝑝𝑖(𝑐1𝑐2)
𝑘𝑐1𝑝𝑖, 𝑖 = 1,2,… ,𝑚, then 𝑠𝑖 ≥

1/(𝑟 + 1) . Assume the contrary, i.e., 𝑠𝑖 < 1/(𝑟 + 1).  Since 𝑠𝑖 <
1

𝑟+1
⟹

1−𝑠𝑖

𝑣1
>

𝑠𝑖

𝑣2
 , 

worker 2 departs from the end of station 𝑖 before worker 1 can complete an item and 

reach the start of station 𝑖. Due to 𝑟 ≥ 2 ⟺
2

𝑣1
≤

1

𝑣2
, 𝑏𝑗 or 𝑝𝑗  (𝑗 ≠ 𝑖) will occur before 

worker 2 completes an item and reaches the start of station 𝑖 . Thus, the cycle 

𝑝𝑖(𝑐1𝑐2)
𝑘𝑐1𝑝𝑖 cannot be constructed. So, we prove 𝑠𝑖 ≥ 1/(𝑟 + 1).  

Next, we prove that 𝑘 = 0. Since 𝑠𝑖 ≥
1

𝑟+1
⟹

1−𝑠𝑖

𝑣1
≤

𝑠𝑖

𝑣2
, worker 1 can reach the start of 

station 𝑖  before worker 2 finishes his work on station 𝑖 . It means that worker 2 

continues working on station 𝑖 and 𝑐2 will never occur. So, we prove 𝑘 = 0. □ 

 

 Proof of THEOREM 4. 

The immediate positions of workers 1 and 2 after 𝑝𝑖 are the end and the start of 

station 𝑖,  respectively. If 𝑠𝑖 ≥
1

𝑟+1
⟹

1−𝑠𝑖

𝑣1
≤

𝑠𝑖

𝑣2
,  which implies that worker 1 can 

complete an item and reach the start of station 𝑖 before worker 2 finishes his work on 
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station 𝑖 . Thus, 𝑝𝑖  will occur. The orbit 𝑝𝑖 → 𝑓(𝑝𝑖): 𝑝𝑖 → ⋯  or 𝑏𝑖 → 𝑓(𝑏𝑖): 𝑝𝑖 → ⋯  is 

obtained. Therefore, the cycle 𝑝𝑖𝑐1𝑝𝑖 is constructed. 

With the cycle of 𝑝𝑖𝑐1𝑝𝑖, its throughput is 𝑣2/𝑠𝑖. Given the velocity of worker 2 𝑣2, the 

throughput 𝑣2/𝑠𝑖 increases as the work amount on station 𝑖, 𝑠𝑖, decreases. When 𝑠𝑖 =

1

𝑟+1
, the maximal throughput is achieved, which is (𝑟 + 1) × 𝑣2 = 𝑣1 + 𝑣2. □ 

 

 Proof of LEMMA 9. 

The immediate positions of workers 1 and 2 after 𝑝𝑖 are the end and the start of 

station 𝑖, respectively. 

(A) If 𝑠𝑖 ≥
1

𝑟+1
, then 𝑘 = 0. 

Because 𝑠𝑖 ≥
1

𝑟+1
⟺

𝑠𝑖

𝑣2
≥
1−𝑠𝑖

𝑣1
,  worker 1 can complete an item and return to the 

start of station 𝑖  before worker 2 finishes his work on station 𝑖 . It means that 

worker 2 remains working on station 𝑖 and 𝑐2 will never occur. Thus, we have 

𝑘 = 0. 

(B) If 𝑠𝑖 <
1

𝑟+1
, then 1 ≤ 𝑘 ≤ ⌈

𝒎−𝟏−𝒓

𝒎(𝒓−𝟏)
⌉. 

Suppose that 𝑘 < 1 ⟹ 𝑘 = 0 or 𝑘 > ⌈
𝒎−𝟏−𝒓

𝒎(𝒓−𝟏)
⌉ ⟹ 𝑘 ≥

𝑚−1−𝑟

𝑚(𝑟−1)
+ 1. We have two cases: 

(1) 𝑘 = 0 and (2) 𝑘 ≥
𝑚−1−𝑟

𝑚(𝑟−1)
+ 1. 

(1) 𝑘 = 0 

If 𝑘 = 0, worker 2 remains working on station 𝑖 and 𝑐2 will never occur. Thus, 

we have 
𝑠𝑖

𝑣2
≥
1−𝑠𝑖

𝑣1
⟹ 𝑠𝑖 ≥

1

𝑟+1
, which contradicts 𝑠𝑖 <

1

𝑟+1
. So, we have 𝑘 ≥ 1. 

    (2) 𝑘 ≥
𝑚−1−𝑟

𝑚(𝑟−1)
+ 1 

If 𝑘 ≥
𝑚−1−𝑟

𝑚(𝑟−1)
+ 1 , we have 

𝑘−1+1/𝑚

𝑣2
≥
𝑘−1/𝑚

𝑣1
. There are two sub cases: (a) 𝑠𝑖 ≥

1/𝑚 and (b) 𝑠𝑖 < 1/𝑚. 

(a) 𝑠𝑖 ≥ 1/𝑚 

If 𝑠𝑖 ≥
1

𝑚
 , we have 

𝑘−1+𝑠𝑖

𝑣2
≥
𝑘−1+1/𝑚

𝑣2
≥
𝑘−1/𝑚

𝑣1
≥
𝑘−𝑠𝑖

𝑣1
. It implies that the next 

iterate will occur before worker 1 completes 𝑘 items and then reaches the 

start of station 𝑖. Thus, the cycle 𝑝𝑖(𝑐1𝑐2)
𝑘𝑐1𝑝𝑖 cannot be constructed 

(b) 𝑠𝑖 < 1/𝑚 

Assume that for any station 𝑗, 𝑠𝑗 < 1/𝑚. We have ∑ sj
m
j=1 < 1. Therefore, if 

𝑠𝑖 < 1/𝑚, there exists at least one station 𝑗 (𝑗 ≠ 𝑖), 𝑠𝑗 ≥ 1/𝑚. Since 𝑠𝑗 ≥ 1/𝑚, 
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we have 
𝑘−1+𝑠𝑗

𝑣2
≥
𝑘−1+1/𝑚

𝑣2
≥
𝑘−1/𝑚

𝑣1
≥
𝑘−𝑠𝑗

𝑣1
 . There are two exclusive cases: 

(i) 𝑗 = 𝑖 + 1,… ,𝑚 and (ii) 𝑗 = 1,… , 𝑖 − 1. 

(i) 𝑗 = 𝑖 + 1,… ,𝑚 

The time for worker 1 to complete k items and reach the start of station 

j is 𝑡1 =
𝑠𝑖+1+⋯+𝑠𝑚+𝑘−1+𝑠1+⋯+𝑠𝑗−1

𝑣1
=
𝑘+𝑠𝑖+1+⋯+𝑠𝑗−1

𝑣1
. The time for worker 2 

to complete k-1 items and reach the end of station j is 𝑡2 =

𝑠𝑖+⋯+𝑠𝑚+𝑘−2+𝑠1+⋯+𝑠𝑗

𝑣2
=
𝑘−1+𝑠𝑖+⋯+𝑠𝑗

𝑣2
 . Combined with 

𝑘−1+𝑠𝑗

𝑣2
≥
𝑘−𝑠𝑗

𝑣1
 , we 

have 𝑡2 ≥
𝑘−𝑠𝑗

𝑣1
+
𝑠𝑖+⋯+𝑠𝑗−1

𝑣2
= 𝑡1 +

𝑠𝑖+⋯+𝑠𝑗−1

𝑣2
−
𝑠𝑖+1+⋯+𝑠𝑗

𝑣1
.  

If 
𝑠𝑖+⋯+𝑠𝑗−1

𝑣2
<
𝑠𝑖+1+⋯+𝑠𝑗

𝑣1
, worker 2 can reach the start of station 𝑗 before 

worker 1 finishes his work on station 𝑗. We have 𝑓(𝑝𝑖) = 𝑏𝑗. Thus, the 

cycle 𝑝𝑖(𝑐1𝑐2)
𝑘𝑐1𝑝𝑖 cannot be constructed.  

If 
𝑠𝑖+⋯+𝑠𝑗−1

𝑣2
≥
𝑠𝑖+1+⋯+𝑠𝑗

𝑣1
 , we have 𝑡2 ≥ 𝑡1 . The next iterate will occur 

before worker 1 completes 𝑘 items and reaches the start of station 𝑗. 

Also, the cycle 𝑝𝑖(𝑐1𝑐2)
𝑘𝑐1𝑝𝑖 cannot be constructed. 

(ii) 𝑗 = 1,… , 𝑖 − 1. 

The time for worker 1 to complete 𝑘 + 1 items and reach the start of 

station 𝑗  is 𝑡1 =
𝑠𝑖+1+⋯+𝑠𝑚+𝑘+𝑠1+⋯+𝑠𝑗−1

𝑣1
=
𝑘+1−(𝑠𝑗+⋯+𝑠𝑖)

𝑣1
 . The time for 

worker 2 to complete 𝑘 items and reach the end of station 𝑗 is 𝑡2 =

𝑠𝑖+⋯+𝑠𝑚+𝑘−1+𝑠1+⋯+𝑠𝑗

𝑣2
=
𝑘−(𝑠𝑗+1+⋯+𝑠𝑖−1)

𝑣2
 . Combined with  

𝑘−1+𝑠𝑗

𝑣2
≥
𝑘−𝑠𝑗

𝑣1
, 

we have 

 𝑡2 ≥
𝑘−𝑠𝑗

𝑣1
+
1−(𝑠𝑗+⋯+𝑠𝑖−1)

𝑣2
= 𝑡1 +

(𝑠𝑖+⋯+𝑠𝑚)+(𝑠1+⋯+𝑠𝑗−1)

𝑣2
−

(𝑠𝑖+1+⋯+𝑠𝑚)+(𝑠1+⋯+𝑠𝑗)

𝑣1
.  

If 
(𝑠𝑖+⋯+𝑠𝑚)+(𝑠1+⋯+𝑠𝑗−1)

𝑣2
<
(𝑠𝑖+1+⋯+𝑠𝑚)+(𝑠1+⋯+𝑠𝑗)

𝑣1
, worker 2 can reach the 

start of station 𝑗 before worker 1 finishes his work on station 𝑗. We have 

𝑓(𝑝𝑖) = 𝑏𝑗. Thus, the cycle 𝑝𝑖(𝑐1𝑐2)
𝑘𝑐1𝑝𝑖 cannot be constructed. 

If 
(𝑠𝑖+⋯+𝑠𝑚)+(𝑠1+⋯+𝑠𝑗−1)

𝑣2
≥
(𝑠𝑖+1+⋯+𝑠𝑚)+(𝑠1+⋯+𝑠𝑗)

𝑣1
 , we have 𝑡2 ≥ 𝑡1 . The 

next iterate will occur before worker 1 completes 𝑘 + 1  items and 

reaches the start of station 𝑗. Also, the cycle 𝑝𝑖(𝑐1𝑐2)
𝑘𝑐1𝑝𝑖 cannot be 

constructed.  

Taken together case (1) and case (2), under the assumptions of 𝑘 = 0  and 𝑘 ≥
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𝑚−1−𝑟

𝑚(𝑟−1)
+ 1, the cycle 𝑝𝑖(𝑐1𝑐2)

𝑘𝑐1𝑝𝑖 cannot be constructed. So, we can conclude that if 

𝑠𝑖 <
1

𝑟+1
, then 1 ≤ 𝑘 ≤ ⌈

𝒎−𝟏−𝒓

𝒎(𝒓−𝟏)
⌉. □ 

 

 Proof of THEOREM 5. 

The immediate positions of workers 1 and 2 after 𝑝𝑖 or 𝑏𝑖 are the end and the start 

of station 𝑖, respectively. 

(A) 𝑘 = 0 

If 𝑠𝑖 ≥
1

𝑟+1
⟹

1−𝑠𝑖

𝑣1
≤

𝑠𝑖

𝑣2
, which implies that worker 1 can complete an item and 

reach the start of station 𝑖 before worker 2 finishes his worker on station 𝑖. Thus, 

𝑝𝑖  will occur. The orbit 𝑝𝑖 → 𝑓(𝑝𝑖): 𝑝𝑖 → ⋯  or 𝑏𝑖 → 𝑓(𝑏𝑖): 𝑝𝑖 → ⋯  is obtained. 

Therefore, the cycle 𝑝𝑖𝑐1𝑝𝑖 is constructed. 

With the cycle 𝑝𝑖𝑐1𝑝𝑖, its throughput is 𝑣2/𝑠𝑖. Given the velocity of worker 2 

𝑣2, the throughput 𝑣2/𝑠𝑖 increases as the work amount on station 𝑖, 𝑠𝑖, decreases. 

When 𝑠𝑖 =
1

𝑟+1
, the maximal throughput is achieved, which is (𝑟 + 1) × 𝑣2 =

𝑣1 + 𝑣2. 

(B) 𝑘 = 1,2,… , 𝑘∗ 

First, we prove that blocking will not occur.  

Based on condition (2), for  𝑗 = 𝑖 + 1,… ,𝑚,  we have 𝑟𝑠𝑖 + (𝑟 − 1)∑ 𝑠𝑜
𝑗−1
𝑜=𝑖+1 ≥

𝑠𝑗 ⟹
𝑠𝑖+∑ 𝑠𝑜

𝑗−1
𝑜=𝑖+1

𝑣2
≥
∑ 𝑠𝑜
𝑗−1
𝑜=𝑖+1 +𝑠𝑗

𝑣1
; for 𝑗 = 1,… , 𝑖 − 1, we have 𝑟𝑠𝑖 + (𝑟 − 1)∑ 𝑠𝑜

𝑚
𝑜=𝑖+1 +

(𝑟 − 1)∑ 𝑠𝑜
𝑗−1
𝑜=1 ≥ 𝑠𝑗 ⟹

𝑠𝑖+∑ 𝑠𝑜
𝑚
𝑜=𝑖+1 +∑ 𝑠𝑜

𝑗−1
𝑜=1

𝑣2
≥
∑ 𝑠𝑜
𝑚
𝑜=𝑖+1 +∑ 𝑠𝑜

𝑗−1
𝑜=1 +𝑠𝑗

𝑣1
. It means that for any 

𝑗 (𝑗 ≠ 𝑖)  worker 1 has departed from the end of station 𝑗 before worker 2 reaches 

the start of station 𝑗. So, any 𝑏𝑗(𝑗 ≠ 𝑖) will not occur. 

Next, we prove that passing will not occur before worker 1 completes 𝑘 items 

and then reaches the start of station 𝑖. 

Assume the contrary, let 𝑗  be the index of that station where passing occurs 

before worker 1 completes 𝑘 items and then reaches the start of station 𝑖. The time 

for worker 1 to complete 𝑘′(𝑘′ ≤ 𝑘) items and then reach the start of station 𝑗 is 

𝑡1 =
𝑠𝑖+1+⋯+𝑠𝑚+𝑘

′−1+𝑠1+⋯+𝑠𝑗−1

𝑣1
. The time for worker 2 to complete 𝑘′ − 1 items and 

then reach the end of station 𝑗 is 𝑡2 =
𝑠𝑖+⋯+𝑠𝑚+𝑘

′−2+𝑠1+⋯+𝑠𝑗

𝑣2
. Based on condition 

(3), we have (𝑟 + 1)𝑠𝑖 < 𝑘 + 𝑟 − 𝑘𝑟  and (𝑟 + 1)𝑠𝑗 < 𝑘 + 𝑟 − 𝑘𝑟 . Thus, 𝑠𝑖 + 𝑠𝑗 <

2(𝑘+𝑟−𝑘𝑟)

𝑟+1
< 𝑘 − (𝑘 − 1)𝑟. Since we assume that passing occurs on station j, we have 
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𝑡1 ≤ 𝑡2. There are two exclusive cases: (a) 𝑗 = 1,2, … , 𝑖 − 1 and (b) 𝑗 = 𝑖 + 1,… ,𝑚. 

Case (a): 𝑗 = 1,… , 𝑖 − 1. 

Since 𝑗 = 1,… , 𝑖 − 1 , we have 𝑘′ ≤ 𝑘 . Because 𝑡1 ≤ 𝑡2 , we have 

𝑘′−𝑠𝑖−𝑠𝑗−(𝑠𝑗+1+⋯+𝑠𝑖−1)

𝑣1
≤
𝑘′−1−(𝑠𝑗+1+⋯+𝑠𝑖−1)

𝑣2
 . Combined with 𝑣1 > 𝑣2 ⟺

(𝑠𝑗+1+⋯+𝑠𝑖−1)

𝑣1
<
(𝑠𝑗+1+⋯+𝑠𝑖−1)

𝑣2
 , we have 

𝑘′−𝑠𝑖−𝑠𝑗

𝑣1
<
𝑘′−1

𝑣2
⟹ 𝑠𝑖 + 𝑠𝑗 > 𝑘

′ − (𝑘′ − 1)𝑟 ≥

𝑘 − (𝑘 − 1)𝑟 due to 𝑘′ ≤ 𝑘  which contradicts 𝑠𝑖 + 𝑠𝑗 < 𝑘 − (𝑘 − 1)𝑟. 

Case (b): 𝑗 = 𝑖 + 1,… ,𝑚. 

Since 𝑗 = 𝑖 + 1,… ,𝑚 , we have 𝑘′ ≤ 𝑘 − 1 . Because 𝑡1 ≤ 𝑡2 , we have 

𝑘′+1−𝑠𝑖−𝑠𝑗−(𝑠1+⋯+𝑠𝑖−1)−(𝑠𝑗+1+⋯+𝑠𝑚)

𝑣1
≤
𝑘′−(𝑠1+⋯+𝑠𝑖−1)−(𝑠𝑗+1+𝑠𝑚)

𝑣2
 . Combined with 𝑣1 >

𝑣2 ⟺
(𝑠1+⋯+𝑠𝑖−1)+(𝑠𝑗+1+⋯+𝑠𝑚)

𝑣1
<
(𝑠1+⋯+𝑠𝑖−1)+(𝑠𝑗+1+⋯+𝑠𝑚)

𝑣2
, we have 

𝑘′

𝑣2
>
𝑘′+1−𝑠𝑖−𝑠𝑗

𝑣1
⟹

𝑠𝑖 + 𝑠𝑗 > (1 − 𝑟)𝑘
′ + 1 ≥ (1 − 𝑟)(𝑘 − 1) + 1 = 𝑘 − (𝑘 − 1)𝑟  due to 𝑘′ ≤ 𝑘 − 1 , 

again contradicting 𝑠𝑖 + 𝑠𝑗 < 𝑘 − (𝑘 − 1)𝑟. Note that, it is impossible for 𝑘’ = 𝑘 

since 𝑗 > 𝑖 in Case (b).  

Third, we prove that passing will not occur before worker 1 completes 𝑘 + 1 

items and reaches the start of station 𝑖. 

Based on condition (3), since (𝑟 + 1)𝑠𝑖 < 𝑘 + 𝑟 − 𝑘𝑟 ⟺
𝑘−𝑠𝑖

𝑣1
>
𝑘−1+𝑠𝑖

𝑣2
 , when 

worker 1 completes 𝑘 items and then reaches the start of station 𝑖  worker 2 has 

completed 𝑘 − 1 items and departed from station 𝑖. 

Based on condition (2), for 𝑗 = 𝑖 + 1,… ,𝑚 , we have 
∑ 𝑠𝑜
𝑚
𝑜=𝑖 +𝑘−2+∑ 𝑠𝑜

𝑗
𝑜=1

𝑣2
<

∑ 𝑠𝑜
𝑚
𝑜=𝑖+1 +𝑘−1+∑ 𝑠𝑜

𝑗−1
𝑜=1

𝑣1
. It means that worker 2 has departed from the end of station 𝑗 

when worker 1 can complete k items and then reach the start of station 𝑗. For 𝑗 =

1,… , 𝑖 − 1, we have 
∑ 𝑠𝑜
𝑚
𝑜=𝑖 +𝑘−1+∑ 𝑠𝑜

𝑗
𝑜=1

𝑣2
<
∑ 𝑠𝑜
𝑚
𝑜=𝑖+1 +𝑘+∑ 𝑠𝑜

𝑗−1
𝑜=1

𝑣1
. It means that worker 2 

has departed from the end of station 𝑗 when worker 1 can complete 𝑘 + 1 items 

and reach the start of station 𝑗. So, any 𝑝𝑗(𝑗 ≠ 𝑖) will not occur. 

Finally, we prove that passing will occur when worker 1 completes 𝑘 + 1 items 

and reaches the start of station 𝑖. 

Based on condition (3), since (𝑟 + 1)𝑠𝑖 ≥ 𝑘 + 1 − 𝑘𝑟, we have 
𝑘+𝑠𝑖

𝑣2
≥
𝑘+1−𝑠𝑖

𝑣1
. It 

means that worker 1 can complete 𝑘 + 1  items and reach the start of station 𝑖 

before worker 2 completes 𝑘 items and departs from the end of station 𝑖. Thus, 𝑝𝑖 

will occur. 

Thus, the orbit 𝑝𝑖 → 𝑓(𝑝𝑖): 𝑝𝑖 → ⋯ or 𝑏𝑖 → 𝑓(𝑏𝑖): 𝑝𝑖 → ⋯ is obtained. The cycle 

𝑝𝑖(𝑐1𝑐2)
𝑘𝑐1𝑝𝑖 is constructed.  
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With the cycle 𝑝𝑖(𝑐1𝑐2)
𝑘𝑐1𝑝𝑖, its throughput is 

2𝑘+1

𝑘+𝑠𝑖
× 𝑣2. Given the velocities of 

the two workers 𝑣1  and 𝑣2 , the throughput increases as the work amount on 

station 𝑖, 𝑠𝑖, decreases. 

When 𝑠𝑖 =
𝑘+1−𝑘𝑟

𝑟+1
 the maximal throughput is achieved, which is (𝑟 + 1) × 𝑣2 = 𝑣1 +

𝑣2. □ 

 

A.2. Illustrative examples 

Example 1: 

Consider a rotating seru with two workers and three stations. The work velocities of 

the workers are 𝑣1 = 2.0 and 𝑣2 = 1.8, and the work content of each station is 𝑠1 =

0.45, 𝑠2 = 0.35, and 𝑠3 = 0.20. Figures A.4(a) and A.4(b) show the period-1 cycles of 

this seru. In the figures, the left and right borders of a station box indicate the start and 

finish times of a worker on that station. A grey box represents a worker who is idle 

due to passing or blocking behaviors. 

In Figure A.4(a), the initial positions of the two workers are represented by 𝑥1 = 0.9 

and 𝑥2 = 0.2. The time it takes for worker 1 to reach the start of station 1 is 𝑡1 =
1−𝑥1

𝑣1
=

0.05, while the time it takes for worker 2 to reach the end of station 1 is 𝑡2 =
0.45−𝑥2

𝑣2
=

0.14 . Since 𝑡1 < 𝑡2 , when worker 1 arrives at the start of station 1, that station is 

occupied by worker 2. Thus, we have 𝑎(0) = 𝑝1. The positions of worker 1 and worker 

2 immediately after 𝑝1 are the end and start of station 1, respectively. The time it takes 

for worker 1 to complete two items and reach the start of station 1 again is 𝑡1
′ =

0.35+0.2+1

2.0
= 0.775 and the time it takes for worker 2 to complete one item and reach 

the end of station 1 is 𝑡2
′ =

1+0.45

1.8
= 0.806. Since 𝑡1

′ < 𝑡2
′ , we have 𝑎(1) = 𝑝1, and an 

orbit 𝑝1 → 𝑓(𝑝1): 𝑝1 → ⋯𝑓(𝑝1): 𝑝1 → ⋯ (or …𝑝1 → 𝑝1…) is obtained. 

In Figure A.4(b), 𝑥1 = 0.4  and 𝑥2 = 0.5 . As with Figure 4(a), we have 𝑎(0) = 𝑝2 , 

𝑎(1) = 𝑏1 , 𝑎(2) = 𝑝1  and 𝑎(3) = 𝑝1 , and an orbit 𝑝2 → 𝑓(𝑝2): 𝑏1 → 𝑓(𝑏1): 𝑝1 →

𝑓(𝑝1): 𝑝1 → ⋯𝑓(𝑝1): 𝑝1 → ⋯ (or …𝑝1 → 𝑝1…) is obtained.  

   

(a) 𝑎(0) = 𝑝1 and 𝑠1 = 0.45, 𝑠2 = 0.35, 𝑠3 = 0.20 

Worker 1

Worker 2 s1 s2 s3

s2 s3 s1 s2 s3

s1 s1 s2 s3

s2 s3 s1 s2 s3

s1

s3

s1

p1 p1 p1c1c1c1 c1

c2 c2

  

  

c1

t0
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(b) 𝑎(0) = 𝑝2 and 𝑠1 = 0.45, 𝑠2 = 0.35, 𝑠3 = 0.20  

Figure A.4. Period-1 cycles for a two-worker, three-station rotating seru. 

  In Figure A.5 (a) and (b), period-2 cycles can be constructed. We set 𝑥1 = 0.9 and 

𝑥2 = 0.1 . For Figure A.5(a), we set 𝑠1 = 0.45 , 𝑠2 = 0.46  and 𝑠3 = 0.09 . The time it 

takes for worker 1 to arrive at the start of station 1 is 𝑡1 =
1−0.9

2.0
= 0.05, while the time 

for worker 2 to arrive at the end of station 1 is 𝑡2 =
0.45−0.1

1.8
= 0.19. Since 𝑡1 < 𝑡2, we 

have 𝑎(0) = 𝑝1. The time for worker 1 to complete an item and then arrive at the start 

of station 2 is 𝑡1
′
=

1

2.0
= 0.500 , and the time for worker 2 to compete his work on 

station 1 and station 2 is 𝑡2
′
=
0.45+0.46

1.8
= 0.506. Since 𝑡1

′
< 𝑡2

′
, we have 𝑎(1) = 𝑝2. We 

continue to track the dynamics of the two workers, we have 𝑎(2) = 𝑝1, and the orbit 

𝑝1 → 𝑓(𝑝1): 𝑝2 → 𝑓(𝑝2): 𝑝1 → ⋯  (or …𝑝1 → 𝑝2 → 𝑝1 → 𝑝2… ) is obtained. For Figure 

A.5(b), we set 𝑠1 = 0.42 , 𝑠2 = 0.47 , 𝑠3 = 0.11 . Due to the larger work content at 

station 2, even with the same initial iterate, we have 𝑎(1) = 𝑏2, 𝑎(2) = 𝑝1, and the orbit 

𝑝1 → 𝑓(𝑝1): 𝑏2 → 𝑓(𝑏2): 𝑝1 → ⋯ (or …𝑝1 → 𝑏2 → 𝑝1 → 𝑏2…) is obtained. 

 

(a) 𝑎(0) = 𝑝1 and 𝑠1 = 0.45, 𝑠2 = 0.46, 𝑠3 = 0.09 

 

(b) 𝑎(0) = 𝑝1 and 𝑠1 = 0.42, 𝑠2 = 0.47, 𝑠3 = 0.11 

Figure A.5. Period-2 cycles for a two-worker and three-station rotating seru. 

 

Example 2 (continued from Example 1): 

  Consider Figure A.4 again. For Figure A.4(a), we have 𝑎(0) = 𝑝1  and 𝑎(1) = 𝑝1 . 

Between 𝑎(0)  and 𝑎(1) , two items are completed by worker 1 and one item is 

completed by worker 2, so we have 𝑘 = 1 , and the behaviors between them are 

Worker 1

Worker 2 s2 s3 s1 s2 s3 s1 s1 s2 s3 s1

s3 s1 s2 s3 s1 s2 s3 s2 s3 s1 s2 s3

s2

s1   

  

t

p1 p1c1c1c1c1c1p2

c2 c2c2 b1

0

Worker 1

Worker 2 s1 s2 s3s2 s1

s2 s3 s1 s3 s1 s2 s3

s1 s2

s2 s3 s1s2 s3

s1

  

  

t0

p1c1 c1 p2 c1
p1c1 c1 p2

c2

s1 s2 s3 s1 s1 s2 s3 s1s1

s3 s2 s3 s1 s2 s3 s1 s2 s3s2 s3Worker 1

Worker 2

0

p1c1 c1 p1c1 c1 p1c1

c2 c2b2b2

  

  

t
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denoted as 𝑝1𝑐1𝑐2𝑐1𝑝1  (i.e., (1) of Lemma 2). For Figure A.4(b), we have 𝑎(0) = 𝑝2 , 

𝑎(1) = 𝑏1, and 𝑎(2) = 𝑝1. Between 𝑎(0) and 𝑎(1), worker 1 and worker 2 complete one 

item each, so we have 𝑘 = 1, and the behaviors between them are denoted as 𝑝2𝑐1𝑐2𝑏1 

(i.e., (2) of Lemma 2). Between 𝑎(1) and 𝑎(2), two items are completed by worker 1 

and one item is completed by worker 2, so we have 𝑘 = 1 and the behaviors between 

them are denoted as 𝑏1𝑐1𝑐2𝑐1𝑝1 (i.e., (1) of Lemma 2). 

  According to (1) of Lemma 2, when 𝑣1 = 2.0, 𝑣2 = 1.8, and 𝑚 = 3, we have 𝑘 ≤ 4. 

We illustrate the cases of 𝑘 = 2,3,4 by changing the work content on the stations. 

When the difference between the work content on different stations is relatively 

small, worker 2 has the opportunity to complete more items between two successive 

passing behaviors, resulting in a larger 𝑘. For example, given 𝑠1 = 0.40, 𝑠2 = 0.35, 

𝑠3 = 0.25, and starting with 𝑎(0) = 𝑝1, by analyzing the dynamics of the two workers, 

we can see that 𝑎(1) = 𝑝1 . Between 𝑎(0)  and 𝑎(1) , three items are completed by 

worker 1 and two items are completed by worker 2. Thus, we have 𝑘 = 2 and the 

behaviors between them can be denoted as 𝑝1𝑐1𝑐2𝑐1𝑐2𝑐1𝑝1. 

By adjusting the work content on the stations to 𝑠1 = 0.35, 𝑠2 = 0.30, and 𝑠3 = 0.35, 

if 𝑎(0) = 𝑝1, we still have 𝑎(1) = 𝑝1. However, between 𝑎(0) and 𝑎(1), four items are 

completed by worker 1 and three items are completed by worker 2. Thus, we have 𝑘 =

3 and the behaviors between them can be denoted as 𝑝1𝑐1𝑐2𝑐1𝑐2𝑐1𝑐2𝑐1𝑝1. 

Given 𝑠1 = 0.31, 𝑠2 = 0.34, 𝑠3 = 0.35 and 𝑎(0) = 𝑝1, the time it takes for worker 1 

to complete five items and reach the start of station 1 is 𝑡1 =
0.34+0.35+4

2.0
=
4.69

2.0
= 2.35, 

while the time it takes for worker 2 to complete four items and reach the end of station 

1 is 𝑡2 =
4+0.31

2.0
= 2.16 . Since 𝑡1 > 𝑡2 , 𝑝1  will not occur. Continuing to analyze the 

dynamics of the workers, the time it takes for worker 1 to complete five items and 

reach the start of station 2 is 𝑡1
′ =

0.34+0.35+4+0.31

2.0
= 2.5 , while the time it takes for 

worker 2 to complete four items and reach the end of station 2 is 𝑡2
′ =

4+0.31+0.34

1.8
=

2.58. Since 𝑡1
′ < 𝑡2

′ , we have 𝑎(1) = 𝑝2. Therefore, we have 𝑘 = 4 and the behaviors 

between them can be denoted as 𝑝1𝑐1𝑐2𝑐1𝑐2𝑐1𝑐2𝑐1𝑐2𝑐1𝑝2. 

 

Example 3: 

Given 𝑣1 = 2.6  and 𝑣2 = 1.2 , we have 𝑟 = 𝑣1/𝑣2 = 2.17 . Let 𝑠1 = 0.2 , 𝑠2 = 0.6 , 

𝑠3 = 0.2, and 𝑎(0) = 𝑝1. According to Lemma 3, we have 𝑎(1) = 𝑏2 because 𝑟𝑠1 < 𝑠2, 

and 𝑎(2) = 𝑝2  because 𝑠2 ≥ 1/(𝑟 + 1) . So, the orbit 𝑝1 → 𝑓(𝑝1): 𝑏2 → 𝑓(𝑏2): 𝑝2 →

𝑓(𝑝2): 𝑝2… is obtained. According to Lemma 4, the point (𝑠1, 𝑠2) is in region 4 (see 

Figure 4(a)), the cycle is 𝜃2 = 𝑝2𝑐1𝑝2 and the throughput is 𝜏2 = 𝑣2/𝑠2 = 2.0. 
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Example 4 (continued from Example 3): 

Again, 𝑣1 = 2.6 and 𝑣2 = 1.2. Figure A.6 shows the throughput in each region with 

different initial states. As the velocity ratio is 𝑟 ≥ 2 , blocking will never occur and 

worker 2 will always be working on the station that has the largest work content 

among the three stations. Although worker 2 remains occupied at a single station, 

worker 1 may have to wait at the start of the station where passing occurs. The 

throughput of the system depends on worker 2’s velocity and the amount of work 

content on the station where passing occurs. The throughput decreases monotonically 

with respect to worker 1’s waiting time. Regions 4-7 have different throughputs, as 

shown in Figure A.6 (a)-(c). This is because they have multiple feasible cycles with 

different initial states. It is important to note that, according to Theorem 2, the maximal 

throughput 𝑣1 + 𝑣2 = 3.8 is achieved when the work content is distributed optimally 

among stations. If 𝑎(0) ∈ {𝑝1, 𝑏1} , the maximal throughput is achieved when 𝑠1 =

1/(𝑟 + 1) = 0.32 ; or when 𝑠2 = 0.32  and 0 < 𝑠1 < 0.32 . See Figure A.6(a). If 𝑎(0) ∈

{𝑝2, 𝑏2}, the maximal throughput is achieved when 𝑠2 = 0.32; or when 𝑠3 = 0.32 and 

0 < 𝑠2 < 0.32. See Figure A.6(b). If 𝑎(0) ∈ {𝑝3, 𝑏3}, the maximal throughput is achieved 

when 𝑠3 = 0.32; or when 𝑠1 = 0.32 and 0 < 𝑠3 < 0.32. See Figure A.6(c). 

 

(a) 𝑝1 or 𝑏1 

 

(b) 𝑝2 or 𝑏2 
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(c) 𝑝3 or 𝑏3 

Figure A.6. The throughput with different initial states when 𝑣1 = 2.6 and 𝑣2 = 1.2. 

 

Example 5: 

Given 𝑣1 = 2.0  and 𝑣2 = 1.8 , we have 𝑟 = 𝑣1/𝑣2 = 1.11  and 𝑘∗ = 3 . Let 𝑠1 = 0.4 , 

𝑠2 = 0.41 , 𝑠3 = 0.19 , and the initial state 𝑎(0) = 𝑝1 . Because 𝑇(2) = 0.4218 , 𝑇(3) =

0.3697 , and 𝑇(3) ≤ (𝑠1, 𝑠2) < 𝑇(2) , the point (𝑠1, 𝑠2)  is on the second layer 𝐷(2) . 

According to Lemma 5, as 𝑎(0) = 𝑝1 , we have 𝑎(1) = 𝑝2  because of  𝑟𝑠1 ≥ 𝑠2 ,  𝑟𝑠1 +

(𝑟 − 1)𝑠2 ≥ 𝑠3 , 𝑠3 ≤ Ω(𝑘) , and 𝑎(2) = 𝑝1  because of 𝑟𝑠2 ≥ 𝑠3 , 𝑟𝑠2 + (𝑟 − 1)𝑠3 ≥ 𝑠1 , 𝑠1 >

Ω(𝑘) , 𝑠3 ≤ 𝑟Ω(𝑘) . Correspondingly, the orbit 𝑝1 → 𝑓(𝑝1): 𝑝2 → 𝑓(𝑝2): 𝑝1…  is obtained. 

According to Lemma 6, the point (𝑠1, 𝑠2) is on sub region 1 of layer 𝐷(2). The cycle is 

𝜃1(2) = 𝑝1𝑐1𝑐2𝑐1𝑝2𝑐1𝑐2𝑐1𝑐2𝑐1𝑝1 and the throughput is 𝜏1(2) =
8

4−0.19
× 1.8 = 3.78. 

 

Example 6 (continued from Example 5). 

Figure A.7 shows the throughput in each region for different initial states. The 

velocities are 𝑣1 = 2.0  and 𝑣2 = 1.8 . In Regions 1-6, the throughput decreases 

monotonically because the three stations are less balanced, and worker 2 is kept busy 

on a single station. In contrast, the throughput remains stable and high for Region 𝐷 

since the waiting times of worker 1 are not long due to the work content being more 

evenly distributed than in Regions 1-6. In Region 𝐷, worker 2 does not work on a 

single station, having opportunities to complete more items in cycles. Only small 

throughput differences exist in Regions 4-6, as shown in Figure A.7 (a)-(c), because the 

areas of Regions 4-6 become small with the decrease of the worker velocity ratio. By 

Theorem 3, the maximal throughput 𝑣1 + 𝑣2 = 3.8 is achieved if the work content is 

distributed optimally. Let us take layer 𝐷(2)  as an example. If 𝑎(0) ∈ {𝑝1, 𝑏1} , the 

maximal throughput is achieved when 𝑠1 = 0.37 and 0.22 ≤ 𝑠2 ≤ 0.41, or when 𝑠2 =

0.37 and 0.22 ≤ 𝑠1 ≤ 0.37, or when 𝑠3 = 0.37 and 0.26 ≤ 𝑠1 ≤ 0.37, as in Figure A.7(a). 

If 𝑎(0) ∈ {𝑝2, 𝑏2}, the maximal throughput is achieved when 𝑠2 = 0.37 and 0.22 ≤ 𝑠3 ≤
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0.41, or when 𝑠3 = 0.37 and 0.22 ≤ 𝑠2 ≤ 0.37, or when 𝑠1 = 0.37 and 0.26 ≤ 𝑠2 ≤ 0.37, 

as in Figure A.7(b). If 𝑎(0) ∈ {𝑝3, 𝑏3}, the maximal throughput is achieved when 𝑠3 =

0.37 and 0.22 ≤ 𝑠1 ≤ 0.41, or when 𝑠1 = 0.37 and 0.22 ≤ 𝑠3 ≤ 0.37, or when 𝑠2 = 0.37 

and 0.26 ≤ 𝑠1 ≤ 0.37, as in Figure A.7(c). 

 

(a) 𝑝1 or 𝑏1 

 

(b) 𝑝2 or 𝑏2 

 

(c) 𝑝3 or 𝑏3 
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Figure A.7. The throughput with different initial states when 𝑣1 = 2.0 and 𝑣2 = 1.8. 

 

Example 7: 

Consider a rotating seru of two workers and six stations, where 𝑣1 = 2.0, 𝑣2 = 1.8, 

and 𝑟 = 𝑣1/𝑣2 = 1.11. Let 𝑠1 be the fixed station where passings occur. We have a 

cycle 𝑝1 𝑐1𝑐2…𝑐1𝑐2⏟      
𝑘

𝑐1𝑝1.  

We set 𝑠1 = 0.5 ≥ 1/(𝑟 + 1)  (Case (A) of Lemma 9) and 𝑠2 = 𝑠3 = 𝑠4 = 𝑠5 = 𝑠6 =

0.1. The immediate positions of workers 1 and 2 after 𝑝1 are the end and the start of 

station 1,  respectively. Because 𝑠1 = 0.5 ≥
1

𝑟+1
⟺

𝑠1

𝑣2
≥
1−𝑠1

𝑣1
 , worker 1 can complete 

one item and return to the start of station 1 before worker 2 finishes her/his work on 

station 1. This means that worker 2 keeps working on station 1 and 𝑐2 will never occur. 

Thus, we have 𝑘 = 0. 

  Let us set 𝑠1 = 0.45 < 1/(𝑟 + 1)  (Case (B) of Lemma 9) and 𝑠2 = 𝑠3 = 𝑠4 = 𝑠5 =

𝑠6 = 0.11. Because 𝑠1 = 0.45 ⟺
2−𝑠1

𝑣1
<
1+𝑠1

𝑣2
, before worker 2 completes one item and 

reaches the end of station 1, worker 1 completes two items and arrives at the start of 

station 1. In this case, we have 𝑘 = 1. 

According to (B) of Lemma 9, 𝑘 ≤ 𝑘∗ = ⌈
𝒎−𝟏−𝒓

𝒎(𝒓−𝟏)
⌉ = ⌈5.89⌉ = 6 . We can adjust the 

work content on the stations to 𝑠1 = 0.165 and 𝑠2 = 𝑠3 = 𝑠4 = 𝑠5 = 𝑠6 = 0.167. Since 

𝑠1 = 0.165 ⟺
7−𝑠1

𝑣1
<
6+𝑠1

𝑣2
, worker 1 completes seven items and arrives at the start of 

station 1 before worker 1 completes six items and reaches the end of station 1. Thus, 

we have 𝑘 = 6. 

 

Example 8: 

Consider a rotating seru of two workers and five stations, where 𝑣1 = 2.5, 𝑣2 = 2.0, 

and 𝑟 = 𝑣1/𝑣2 = 1.25. 

We set 𝑠1 = 0.5 (Case (A) of Theorem 5) and 𝑠2 = 𝑠3 = 𝑠4 = 𝑠5 = 0.125. Given the 

initial state 𝑎(0) = 𝑝1 or 𝑏1, the immediate positions of workers 1 and 2 after 𝑝1 or 

𝑏1 are the end and the start of station 1, respectively. Because 𝑠1 = 0.5 ≥
1

𝑟+1
⟺

𝑠1

𝑣2
≥

1−𝑠1

𝑣1
 (Condition (1) of Theorem 5), we have 𝑎(1) = 𝑝1. Thus, the cycle 𝑝1(𝑐1𝑐2)

𝑘𝑐1𝑝1 is 

constructed, where 𝑘 = 0 . Furthermore, when 𝑠1 =
1

𝑟+1
= 0.44 ⟺

𝑠1

𝑣2
=
1−𝑠1

𝑣1
 , there is 

no waiting time for worker 1, and worker 2 keeps busy on station 1. Thus, the maximal 

throughput can be obtained, that is 𝑣1 + 𝑣2 = 4.5. 

Let us set 𝑠3 = 0.3  (Case (B) of Theorem 5), 𝑠1 = 𝑠2 = 𝑠4 = 𝑠5 = 0.175  and the 
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initial state 𝑎(0) = 𝑝3 or 𝑏3. The immediate positions of workers 1 and 2 after 𝑝3 or 

𝑏3 are the end and the start of station 3, respectively. Since 𝑠3 = 0.3 <
1

𝑟+1
⟺

𝑠3

𝑣2
<
1−𝑠3

𝑣1
, 

worker 2 has departed from the end of station 3 before worker 1 has completed one 

item and returned to the start of station 3. Because 
𝑠3

𝑣2
≥
𝑠4

𝑣1
 , 
𝑠3+𝑠4

𝑣2
≥
𝑠4+𝑠5

𝑣1
 , 
𝑠3+𝑠4+𝑠5

𝑣2
≥

𝑠4+𝑠5+𝑠1

𝑣1
 , and 

𝑠3+𝑠4+𝑠5+𝑠1

𝑣2
≥
𝑠4+𝑠5+𝑠1+𝑠2

𝑣1
  (𝑟𝑠𝑖 + (𝑟 − 1)∑ 𝑠𝑜

𝑗−1
𝑜=𝑖+1 ≥ 𝑠𝑗  for 𝑖 = 3  and 𝑗 =

4,5 , 𝑟𝑠𝑖 + (𝑟 − 1)∑ 𝑠𝑜
𝑚
𝑜=𝑖+1 + (𝑟 − 1)∑ 𝑠𝑜

𝑗−1
𝑜=1 ≥ 𝑠𝑗  for 𝑖 = 3  and 𝑗 = 1,2  (Condition 

(2) of Theorem 5), worker 1 has departed from the end of stations 4, 5, 1, and 2 when 

worker 2 reaches the start of stations 4, 5, 1, and 2. Thus, 𝑏4, 𝑏5, 𝑏1, and 𝑏2 will never 

occur. 

Continuing to consider the dynamics of the two workers, we can conclude that 

passings will not occur before worker 1 completes two items and then reaches the start 

of station 3 because 
1

𝑣1
>
𝑠3+𝑠4

𝑣2
 , 
1+𝑠4

𝑣1
>
𝑠3+𝑠4+𝑠5

𝑣2
 , 
1+𝑠4+𝑠5

𝑣1
>
𝑠3+𝑠4+𝑠5+𝑠1

𝑣2
 , 
1+𝑠4+𝑠5+𝑠1

𝑣1
>

1

𝑣2
  , 

and 
2−𝑠3

𝑣1
>
1+𝑠3

𝑣2
  (Condition (3) of Theorem 5). Because 

2

𝑣1
>
1+𝑠3+𝑠4

𝑣2
  and 

2+𝑠4

𝑣1
>

1+𝑠3+𝑠4+𝑠5

𝑣2
  ( 𝑘 + 𝑟 − 𝑘𝑟 − 𝑟𝑠𝑗 > 𝑟𝑠𝑖 + (𝑟 − 1)∑ 𝑠𝑜

𝑗−1
𝑜=𝑖+1   for 𝑘 = 2 , 𝑖 = 3  and 𝑗 = 4,5 

(Condition (2) of Theorem 5), worker 2 has departed from the end of stations 4 and 5 

when worker 1 completes two items and reaches the start of stations 4 and 5. Because 

2+𝑠4+𝑠5

𝑣1
>
1+𝑠3+𝑠4+𝑠5+𝑠1

𝑣2
  and 

2+𝑠4+𝑠5+𝑠1

𝑣1
>

2

𝑣2
  ( 𝑘 + 𝑟 − 𝑘𝑟 − 𝑟𝑠𝑗 > 𝑟𝑠𝑖 + (𝑟 −

1)∑ 𝑠𝑜
𝑚
𝑜=𝑖+1 + (𝑟 − 1)∑ 𝑠𝑜

𝑗−1
𝑜=1   for 𝑘 = 2 , 𝑖 = 3  and 𝑗 = 1,2  (Condition (2) of 

Theorem 5), worker 2 has departed from the end of stations 1 and 2 when worker 1 

completes three items and reaches the start of stations 1 and 2. So, 𝑝4, 𝑝5, 𝑝1, 𝑝2 will 

not occur. 

Because 
3−𝑠3

𝑣1
≤
2+𝑠3

𝑣2
 (𝑘 + 1 − 𝑘𝑟 ≤ (𝑟 + 1)𝑠𝑖 for 𝑘 = 2 and 𝑖 = 3 (Condition (3) of 

Theorem 5), worker 1 completes three items and reaches the start of station 3 before 

worker 2 has completed two items and departed from the end of station 3. Thus, 𝑝3 

will occur. So, the cycle 𝑝3𝑐1𝑐2𝑐1𝑐2𝑐1𝑝3  is constructed, where 𝑘 = 2 . Furthermore, 

when 𝑠3 =
3−2𝑟

𝑟+1
= 0.22 ⟺

3−𝑠3

𝑣1
=
2+𝑠3

𝑣2
, there is no waiting time for worker 1 when 𝑝3 

occurs and the maximal throughput is obtained, that is 𝑣1 + 𝑣2 = 4.5. 

 

Example 9: 

Figure A.8 is used to show that a period-3 cycle exists in a three-worker, four-station 

rotating seru. We set 𝑣1 = 2.0, 𝑣2 = 1.5, 𝑣3 = 1.0, 𝑥1 = 0, 𝑥2 = 0.35, 𝑥3 = 0.05, 𝑠1 =
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0.05 , 𝑠2 = 0.3 , 𝑠3 = 0.6 , 𝑠4 = 0.05 . The time for worker 1 to arrive at the start of 

station 2 is 𝑡1 =
0.05

2.0
= 0.025; the time for worker 3 to arrive at the end of station 2 is 

𝑡2 =
0.3

1.0
= 0.3. Since 𝑡1 < 𝑡2, we have 𝑎(0) = 𝑝2

1−3. After 𝑝2
1−3, worker 2 is still working 

on station 3; then we have 𝑎(1) = 𝑝3
1−2. The time for worker 1 to complete an item and 

then arrive at the start of station 2 is 𝑡1
′
=
0.6

1.5
+
0.05

2.0
+
0.05

2.0
= 0.45; the time for worker 

3 to arrive at the end of station 2 is 𝑡3
′
= 0.3 +

0.3

1.0
= 0.6 . Since 𝑡1

′
< 𝑡3

′
 , we have 

𝑎(2) = 𝑝2
1−3. After 𝑝2

1−3, worker 2 is still working on station 3 and the time for worker 

2 to arrive at the end of station 3 is 𝑡2
′
=
0.6

1.5
+
0.6

1.5
= 0.8; then we have 𝑎(3) = 𝑝3

1−2. The 

time for worker 1 to complete an item and then arrive at the start of station 2 is 𝑡1
′′

=

0.8 +
0.05

2.0
+
0.05

2.0
= 0.85; the time for worker 3 to arrive the end of station 2 is 𝑡3

′′
=

0.6 +
0.3

1.0
= 0.9 . Since 𝑡1

′′
< 𝑡3

′′
 , we have 𝑎(4) = 𝑝2

1−3 . After 𝑝2
1−3 , worker 2 is still 

working on station 3; then we have 𝑎(5) = 𝑝3
1−2. The time for worker 3 to arrive at the 

start of station 3 is 0.9 +
0.3

0.1
= 1.2; the time for worker 2 to arrive at the end of station 

3 is 0.8 +
0.6

1.5
= 1.2. That is, worker 3 arrives at the start of station 3 when worker 2 

arrives at the end of station 3. After 𝑝3
1−2, worker 3 is blocked at the start of station 3; 

then we have 𝑎(6) = 𝑏3
3−2. The time for worker 1 to complete an item and arrive at the 

start of station 2 is 1.2 +
0.05

2.0
+
0.05

2.0
= 1.25; at this time, worker 3 is still blocked at the 

start of station 3 by worker 2. Thus, we have 𝑎(7) = 𝑝2
1−3. After 𝑝2

1−3, worker 2 is still 

working on station 3; then we have 𝑎(8) = 𝑝3
1−2. Continuing to study the dynamics of 

these three workers, we have 𝑎(9) = 𝑏3
3−2, and the orbit 𝑝2

1−3 → 𝑝3
1−2 → 𝑝2

1−3 → 𝑝3
1−2 →

𝑝2
1−3 → 𝑝3

1−2 → 𝑏3
3−2 → 𝑝2

1−3 → 𝑝3
1−2 → 𝑏3

3−2… is obtained. 

 

Figure A.8. An example of three workers and four stations 

In this period-3 cycle 𝑏3
3−2 → 𝑝2

1−3 → 𝑝3
1−2 → 𝑏3

3−2 , passing and blocking behaviors 

occur at stations 2 and 3, which form a continuous interval 𝑠2 + 𝑠3. So, as stated in the 

Li-Yorke Theorem, this higher dimensional rotating seru has chaotic characteristics. 

 


