
DBS-25-02

｢Why and How Seru Production Systems Are
Responsive and Efficient in Volatile Markets｣

Dongni Li / Co-corresponding Author, Beijing Institute of Technology
Kathryn E. Stecke / University of Texas at Dallas
Yong Yin†/ † Corresponding Author, Doshisha University
Kan Fang / Tianjin University
Hongbo Jin / Beijing Institute of Technology
Ikou Kaku / Tokyo City University

June, 2025

Dongni Li
Co-corresponding Author, School of Computer Science, Beijing Institute of Technology, Beijing 100081, China,
ldn@bit.edu.cn
Kathryn E. Stecke
Naveen Jindal School of Management, University of Texas at Dallas, P.O. Box 830688, SM 30, Richardson, Texas
75083, U.S., kstecke@utdallas.edu
Yong Yin†
† Corresponding Author. Graduate School of Business, Doshisha University, Karasuma Imadegawa, Kamigyo-ku,
Kyoto 602-8580, Japan, yyin@mail.doshisha.ac.jp
Kan Fang
College of Management and Economics, Tianjin University; Laboratory of Computation and Analytics of Complex
Management Systems (CACMS), Tianjin University, Tianjin 300072, China, kfang@tju.edu.cn
Hongbo Jin
School of Computer Science, Beijing Institute of Technology, Beijing 100081, China, hb@bit.edu.cn
Ikou Kaku
Faculty of Environmental and Information Studies, Tokyo City University, Japan, kakuikou@tcu.ac.jp

Abstract
Seru production systems have demonstrated excellent rapid response capabilities in both stable and uncertain
environments. This study reveals that when compared to the Toyota Production System, the seru production
method improves rapid response capabilities by 20% and 50% in stable and uncertain environments, respectively.
The underlying reasons for this improvement were unclear, so this became a focus of this paper. Static and
dynamic Just-In-Time Organization Systems are used to investigate both the flexibility and efficiency of seru
production systems under stable and uncertain conditions. Findings show that the rapid response capability of a
seru system is driven by the substitution effect of parallel serus. Efficiency is relatively easy to achieve in stable
environments but is more challenging in unstable conditions. Therefore, this study explored methods to achieve
high efficiency in seru systems under uncertain environments. A stochastic gradient algorithm and a dynamic
allocation algorithm are proposed. Experimental results demonstrate that the proposed methods outperform
traditional newsvendor models and can achieve near-optimal performance.

本論文は、4 回にわたる厳しい査読を経て、ようやく採択が決まりました。採択されるのは、経営学分野のトッ
プジャーナルである Production and Operations Management（UTD 24、FT 50）です。今回、同志社大学
より学術サバティカルをいただいたおかげで、三名の査読者からの四度にわたるコメントに集中して対応するこ
とができました。このような機会をいただいたことに、心より感謝申し上げます。

(This paper was supported by KAKEN 25K08175.)

DBS Discussion Paper Series supported by the OMRON Foundation.DBS

Why and How Seru Production Systems Are

Responsive and Efficient in Volatile Markets

Dongni Li
Co-corresponding Author, School of Computer Science, Beijing Institute of Technology, Beijing 100081, China, ldn@bit.edu.cn

Kathryn E. Stecke
Naveen Jindal School of Management, University of Texas at Dallas, P.O. Box 830688, SM 30, Richardson, Texas 75083, U.S.,

kstecke@utdallas.edu

Yong Yin†

† Corresponding Author. Graduate School of Business, Doshisha University, Karasuma Imadegawa, Kamigyo-ku, Kyoto

602-8580, Japan, yyin@mail.doshisha.ac.jp

Kan Fang
College of Management and Economics, Tianjin University; Laboratory of Computation and Analytics of Complex

Management Systems (CACMS), Tianjin University, Tianjin 300072, China, kfang@tju.edu.cn

Hongbo Jin
School of Computer Science, Beijing Institute of Technology, Beijing 100081, China, hb@bit.edu.cn

Ikou Kaku
Faculty of Environmental and Information Studies, Tokyo City University, Japan, kakuikou@tcu.ac.jp

Seru production systems have demonstrated excellent rapid response capabilities in both stable and uncer-

tain environments. This study reveals that when compared to the Toyota Production System, the seru

production method improves rapid response capabilities by 20% and 50% in stable and uncertain environ-

ments, respectively. The underlying reasons for this improvement were unclear, so this became a focus of this

paper. Static and dynamic Just-In-Time Organization Systems are used to investigate both the flexibility

and efficiency of seru production systems under stable and uncertain conditions. Findings show that the

rapid response capability of a seru system is driven by the substitution effect of parallel serus. Efficiency is

relatively easy to achieve in stable environments but is more challenging in unstable conditions. Therefore,

this study explored methods to achieve high efficiency in seru systems under uncertain environments. A

stochastic gradient algorithm and a dynamic allocation algorithm are proposed. Experimental results demon-

strate that the proposed methods outperform traditional newsvendor models and can achieve near-optimal

performance.

Key words : just-in-time, flexibility, assembly, Toyota Production System (TPS), lean.

History : This paper was first submitted in June 2023, revised in May and December 2024 and April 2025,

and accepted on 5 June, 2025 by Panos Kouvelis.

1. Introduction

Taiichi Ohno, the architect of the TPS, identified two pillars underpinning TPS: (1) autonoma-

tion and (2) Just-In-Time Material System (JIT-MS). JIT-MS encompasses two components: the

kanban system and heijunka (level production). For assembly lines focused on a single product

type, a kanban system suffices to manage inventory and optimize throughput (Mitra and Mitrani

1990, 1991, Tayur 1993). Conversely, mixed-model assembly lines, which produce various product

types on the same line, necessitate the integration of both a kanban system and level production

to efficiently control inventory (Boysen et al. 2009, 2022).

Achieving efficiency on a mixed-model line using kanban requires meticulous line balancing

attempts across different models. This balancing process can entail the strategic development of a

joint precedence graph to represent an “average” model, effectively simplifying the mixed-model

challenge into a single-model with uniform processing routes and average processing times. On

the other hand, heijunka aims to regulate production rates over time, ensuring they match with

the market’s consumption patterns. Heijunka facilitates JIT material supply, reducing inventory

levels and attempting to align production closely with actual market demand. However, volatile

markets, characterized by frequent model changes, large fluctuations in demand, and short product

life cycles (with frequent launch of new models), can challenge the principles of balancing and

heijunka, making their implementation difficult. Let’s delve into scenarios that highlight these

challenges.

Balancing a mixed-model assembly line aims for each workstation having an equal workload to

promote efficient flow across models. However, introducing a new model with unique or more com-

plex assembly requirements disrupts this balance. For instance, a line adjusted for three models is

unsettled by a new model needing specialized tasks, altering workstation capabilities, and extend-

ing assembly times, leading to bottlenecks. This change disrupts the line’s balance, as existing

setups cannot handle the new tasks without modifications, highlighting the challenge of maintain-

ing equilibrium with new model introductions.

Level production tries to match production rates to demand, a challenge during demand fluctu-

ations for different models. Consider a car plant producing a range of models on one line, with a

schedule aligning closely with demand. An unexpected demand surge for compact cars, driven by

fuel price increases, disrupts this balance. The line, designed for a diverse model mix, struggles to

shift focus to compact cars, showing the operational limits in adapting to rapid demand changes.

This leads to inefficiencies, such as surplus SUVs and insufficient compact cars, underlining the

difficulty in sustaining level production amid changing demands.

These examples illustrate how a volatile market disrupts the functionality of a mixed-model

production line, leading to delays in meeting market demands. Real-world instances have shown

Toyota grappling with this issue, notably in 2016 when customers faced a six to eight-month wait

for a new Prius, a situation that deteriorated with the 2021 Land Cruiser model, pushing wait

times to over two years. These cases highlight the challenges Toyota’s mixed-model lines face in

achieving both efficiency and flexibility in volatile markets.

Market variability requires buffering strategies that include inventory, time, and capacity buffers

(Hopp and Spearman 2011). Mixed-model systems, ideal for low variability environments, use

kanban methods for WIP inventory control, aim for maximum capacity utilization through line

balancing, and use level production to ensure consistent production rates for finished product

inventory control. In essence, these buffers (inventory, time, and capacity) are manageable results

of strategic decisions. However, as variability increases, the need for these buffers increases. If

inventory levels are kept constant (by not changing the number of kanbans), the capacity buffer

increases because of the reduction in capacity utilization in an unbalanced system. The reduction

in capacity utilization leads to increased time buffers, which adversely affects customer service.

2

High variability makes it difficult for mixed-model systems to effectively manage all three buffers

simultaneously. This sequence of effects demonstrates the interrelated nature of these buffering

strategies in response to market variability.

The introduction of the seru production system was a response to these challenges of high

variability, allowing the production of multiple product types on parallel assembly units, known

as serus. A seru is a small, compact assembly line consisting of simple equipment (e.g., manual

tools) and one or more cross-trained workers to assemble one or more product types (many serus

are dedicated to a single product type). Serus can be constructed, modified, dismantled, and

reconstructed quickly and frequently, mirroring the adaptability biological cells. This similarity

inspired Japanese managers to coin the term seru, the Japanese word for a cellular organism, to

denote its reconfigurable property.

The principal aim of employing seru systems is the rapid response to volatile markets. In con-

trast to the two-pillar foundation of the TPS, seru systems rest on two pillars: Reconfigurability

and Just-In-Time Organization System (JIT-OS). Reconfigurability represents the system’s phys-

ical adaptability, while JIT-OS embodies the managerial flexibility required for seru systems to

address variability swiftly. JIT-OS ensures the availability of the necessary serus, at the right place

and time, with adequate capacity (contrasting with TPS’s JIT-MS, which focuses on material

requirements). To accommodate new models or model changes, serus can be newly created or

modified. Demand fluctuations are managed by altering the number of serus and/or the number

of workers within serus, thereby minimally impacting the existing system. For example, when a

seru is created/dismantled/modified, it does not influence other serus. In contrast, any change on

a mixed-model line has evident influence to the line.

Considering the three types of buffers, TPS’s JIT-MS emphasizes the “inventory of materials”,

with kanban and level production designed to regulate WIP and finished goods inventories. In

contrast, inventory management is less problematic for seru systems, which usually practice one-

piece-flow, eliminating the need for kanban and minimizing WIP. Level production is also less

of a concern because the dedicated nature of most serus negates the need for level production.

However, capacity becomes crucial in seru implementations. With minimal inventory levels and

rapid delivery expectations (small time buffer), capacity should be strategically managed to buffer

against variability, shifting the focus from inventory in TPS to capacity in seru systems.

The first English seru paper was Yin et al. (2008). Subsequent seru research attention includes

Stecke et al. (2012) and Yin et al. (2017), which provide case analyses of seru practices. A recent

seru tutorial can be found in Yin et al. (2025). de Treville et al. (2017) describe seru as a strate-

gic response to rapid product turnover and high demand volatility, enabling competitiveness in

Japan by prioritizing proximity to markets and R&D and shifting from automated machinery to

smaller, versatile equipment. Roth et al. (2016) highlight seru as a more flexible advancement over

TPS, signifying the next generation of lean manufacturing. Hopp and Spearman (2021) indicate

that investigating leanness and agility (e.g., as exemplified by seru production) necessitates an

3

integrated approach, grounded in strategic intent and practical utility. Using statistical analysis,

Bendoly et al. (2021) find that seru responsiveness has a significant positive impact on organi-

zational performance, particularly in contexts where traditional lean thinking is less emphasized.

Cohen et al. (2022) consider seru production as an exemplary model that demonstrates the poten-

tial for firms to significantly enhance their supply chain resilience by rethinking and challenging

conventional constraints.

This paper contributes to the understanding of seru systems by addressing two gaps in the

existing literature. First, while prior research has empirically demonstrated that seru systems offer

flexibility and efficiency, the underlying reasons why this is the case have not been thoroughly

explored. By employing analytical methods to examine the structural properties of seru systems,

this study uncovers mechanisms that show their responsiveness and efficiency. Second, concerning

how to effectively manage a seru system, previous studies, e.g., Zhang et al. (2022), Li et al.

(2023), have predominantly focused on reducing lead times to enhance responsiveness with fixed

seru capacity. To our knowledge, this is an initial effort that conceptualizes seru capacity as a

decision variable, marking a shift in focus towards capacity buffers from the inventory buffers

predominantly underscored in traditional production systems.

2. Seru Applications and Research Questions

The applicability and research questions of seru production systems are presented in this section.

The electronics industry, in contrast to the automotive sector, experiences high volatility. During

the 1990s, to manage such unpredictable conditions, Canon and Sony implemented the mixed-

model approach of the TPS. These efforts did not meet the expected level of success, as documented

in Stecke et al. (2012). Since mixed-model systems are suited to environments with low variability,

they struggle to adapt to highly variable conditions. The shift to seru production systems endowed

electronics companies with flexibility and rapid responsiveness to prosper.

2.1. Seru Applications

Following the success of seru in the electronics industry, other Japanese sectors, including those in

low variability business environments, have also used seru systems, with reports of successful imple-

mentations. Food Plant Manager, a Japanese monthly magazine, dedicated a special issue (Editor

2011) showcasing the application of seru production in various food factories. Denso incorporates

seru systems to produce maintenance parts for cars (Stecke et al. 2012). Nissan utilizes seru systems

to assemble front-end modules, components in automobile assembly (Gai et al. 2023). Yamaha

(2024) employs seru systems to manufacture engines and motorcycles. Wimo (2020) applies seru

systems to bicycle production. Notably, these sectors are characterized by non-innovative products

with long life cycles. For example, food items and maintenance parts typically sustain life cycles

spanning decades, with relatively stable and predictable market conditions.

In high variability environments, seru systems demonstrate three distinct operational modes:

regular, seasonal, and emergent. For regular production, the focus is on fulfilling the day-to-day

demand for both off-the-shelf and customized products, with the primary goal being profitability.

4

While a high degree of responsiveness is necessary, it is not as critical as it is during seasonal

and emergent periods. Seru responsiveness allows companies to selectively respond to customer

demands as well as strategically relocate less profitable product lines. For example, since 2003,

Canon has moved many low-profit production lines from China back to Japan (Takano 2005).

Seasonal production addresses the less predictable and significant fluctuations in demand tied to

cultural and seasonal events. Products such as Daikin’s air conditioners, which see heightened sales

before and during summer, or items in high demand during the Golden Week, China’s Double 11,

or festive periods like Christmas, require a preemptive scaling of production. A survey (Wu et al.

2024) noting that seasonal demand can constitute the majority of annual sales for some products

underscores the potential use of seru systems to balance profitability with responsiveness.

Emergent production is triggered by unexpected occurrences such as pandemics, earthquakes,

and other disasters. The primary objective of emergent production is responsiveness and resilience,

so that production is not disrupted by emergencies. Profit is less important but higher responsive-

ness is required. Most customers are local governments and non-profit organizations. Production

is related to the survival of disaster-affected residents. An example is Nihon Kohden, a Japanese

medical electronics company that used serus to produce ventilators for COVID-19.

The above production practices are summarized in Table 1.

Table 1 Seru Practice in the Manufacturing Environments.

Low variability High variability
A single line TPS: mixed-model N/A
Parallel serus Variation Regular, Seasonal, Emergent

Seru production principles have been applied successfully beyond the manufacturing domain.

For instance, in the context of logistics, seru has enhanced the efficiency of order picking in

warehouses (Gai et al. 2023). In the healthcare industry, the “seru nursing provision method” is

used to streamline nursing tasks, improving efficiency and job satisfaction. This method reduces

unnecessary practices, allowing nurses to devote more time to patient care and derive greater

fulfillment from their work (Sudo 2019). In product development, Iris-Ohyama uses a seru-inspired

method to assign a single developer the responsibility for the entire process from planning and

market research to procurement, prototyping, design, cost calculation, pricing, and sales planning.

This comprehensive approach has proven to yield short lead times (Mitamura 2012). Although

such applications in non-manufacturing sectors are compelling, they fall outside the scope of this

paper.

2.2. Managerial Decisions and Research Questions

Responsiveness is defined as the degree to which a production system can speedily and effectively

fulfill customer demands. Flexibility refers to the capability of a system to adapt its operations

in ways that enhance responsiveness. Maximum Cost Efficiency is the ability to maximize output

while minimizing input, thereby maximizing overall profitability.

To evaluate responsiveness, completion time in this section and cycle time in Section 4 are used

to assess a production system’s speed. Response rate is defined in Section 4 to evaluate a system’s

5

effectiveness in meeting customer demands. Cost efficiency is used in TPS and lean (Hopp and

Spearman 2021). Cost efficiency focuses on maintaining constant output while minimizing input.

Seru practices outlined in Table 1 employ static (offline) and/or dynamic (online) JIT-OS for

production planning. Static JIT-OS is used when orders are known in advance. Dynamic JIT-OS

is applied when orders are unknown, requiring a seru system schedule incoming orders during the

production period. Formal definitions of static and dynamic JIT-OS are provided below.

• Static JIT-OS Problem: Given a set of serus and a roster of customer orders at the start of

a production period, the objective is to determine the optimal capacity for each seru and to assign

customer orders to maximize total profit.

• Dynamic JIT-OS Problem: Given a set of serus at the start of a production period, the

capacity of each seru is determined to accommodate a stream of unknown incoming orders of

various product types and volumes. When an order arrives, it will be assembled on one or more

serus to maximize expected profit. If remaining capacity is insufficient to complete an order, the

order is assembled to the greatest extent possible within the capacity limits, which implies that

customers are willing to accept partial fulfillment of their orders. Remaining unsatisfied orders can

be produced in subsequent periods with known orders using the static JIT-OS mode that scheduled

the next period. Or they may become lost sales if customers no longer want them. For example,

seasonal and emergent customer orders are usually lost if they cannot be produced before a deadline

such as the first day of the Golden Week.

The use of static or dynamic scheduling varies across different seru practices. In low variability

contexts, where offline orders dominate, a static JIT-OS approach should be used. For example,

delicatessen products sold in retail stores have short product lifecycles (one or two days). Food

plants such as Ishii Foods use a static approach to plan tomorrow’s production based on confirmed

orders received from retailers today.

In high variability contexts, regular seru production involves a mix of offline and online orders.

For instance, Omron (a Japanese electronics seru practitioner producing a variety of electronic

products such as healthcare devices) provides a “within 24 hours delivery” service. For products

to be delivered on Friday, Omron produces them on Thursday. Many customers place orders

before Thursday (for Friday), which are known in advance, allowing Omron to use a static JIT-

OS approach to plan Thursday’s production. However, some customers place orders on Thursday,

which are unknown in advance. Omron employs a dynamic JIT-OS approach to adapt to these

incoming orders during Thursday’s production.

Seasonal seru production is largely driven by online orders. For example, a seru practitioner

producing cameras can organize a 3-day production period (say, April 19 to 21) before Golden

Week (April 22 to 30) for holiday sales. Proactive retailers place orders before the 19th. These

offline orders are managed using a static JIT-OS approach. Many retailers prefer to to place orders

during the production period, as they have more accurate forecasts of customer demand closer to

Golden Week. These online orders are managed using a dynamic JIT-OS approach.

6

Finally, emergent seru production operates almost exclusively with online orders. For example,

a seru practitioner producing ventilators for COVID-19 faces a situation where both producers

and customers can hardly make any forecasts. Therefore, almost all customer orders are online

and managed using a dynamic JIT-OS approach.

So, sometimes both static and dynamic JIT-OS approaches are required. Regular and seasonal

seru production involves a mix of static and dynamic JIT-OS problems. These problems can

be addressed separately and sequentially. First, the static JIT-OS problem is solved. Then the

dynamic JIT-OS problem is solved. Finally, the solutions are combined to achieve an integrated

solution.

The following Theorem 1 states that the static JIT-OS problem can be optimized within poly-

nomial time, thus enabling any standard optimization software to solve it efficiently. All proofs for

Theorems are in Section EC.3 of the online Appendix.

Theorem 1. A general static JIT-OS problem can be optimized in polynomial-time to maximize

output while minimizing input, maximizing overall profitability.

Under the static JIT-OS mode, Theorem 1 shows that efficiency of a seru system can be

achieved. This efficiency is useful because seru production periods are typically short (one day for

Ishii and Omron). Delays in computation could lead to missed delivery windows, adversely affecting

customer satisfaction and company reputation. In contrast, traditional production systems such as

TPS are designed for longer production periods. Toyota’s production period is around two months.

Toyota can afford to spend several days on computation.

Flexibility can be achieved by using different serus to produce customer orders. If a seru cannot

produce an order, another seru can substitute to fulfill it. Details are in the proof. As we show

in Section 4.1, this substitution mechanism also operates in the dynamic JIT-OS mode. However,

achieving efficiency in dynamic JIT-OS is not automatic.

Theorem 1 demonstrates that a seru can achieve cost efficiency. Next, we compare the respon-

siveness of a seru system with a TPS line under static mode using an example.

• Static Version of Penny Fab One

An example is used from Factory Physics (page 232), Penny Fab One, which operates as a

balanced TPS line, for this comparison. The line consists of four sequential stations, each operated

by a worker, with an assembly time of two hours allowed per station. We compare this TPS

line with a seru system, assuming both are perfectly designed (i.e., a balanced TPS line and an

optimized seru system, as outlined in Theorem 1).

The seru system has four yatais, each with one worker. A single worker assembles the entire

product in each yatai, taking eight hours per product. Both the TPS line and the seru system

have the same production rate of 1/2 product per hour. Consider a static JIT-OS scenario where

a customer orders 12 products, known at the start of the production period.

With this complete information, the TPS line produces the 12 products in 30 hours. The first

product is finished in 8 hours, the second and third in 10 and 12 hours, respectively, with the
7

final product completed in 30 hours. In contrast, the seru system produces 12 products in 24

hours. Four products are completed in 8 hours, and 8 and 12 products are finished in 16 and

24 hours, respectively. Thus, the seru system is more responsive than the TPS line, reducing

batch completion time by 6 hours, 20% faster than the TPS line. We summarize these findings in

Managerial Insight 1.

Managerial Insight 1: In static stable environments, optimizing the efficiency of a seru system is

straightforward. The enhanced responsiveness of a seru system is automatic because of its flexible

structure, where multiple parallel serus (e.g., i, j, and others) can substitute for one another to

handle orders. In terms of responsiveness, a seru system outperforms a TPS line by achieving

shorter completion times for batch production.

Sections 3, 4, 5, 6, and 7 discuss dynamic JIT-OS.

3. Dynamic JIT-OS

A dynamic JIT-OS problem incorporates two stages. Determine capacity for each seru at the

beginning of a period and assign each order to one or more serus after it arrives.

Notation is in Table 2. Consider a seru system in which there are I serus with index i= 1, ..., I.

The set of serus is defined as I = {1,2, . . . , I}, i ∈ I. A skill structure is a set that contains all

types and ranges of worker skills that the seru system can use to perform tasks. Each worker has

achieved a particular skill level that defines what tasks he/she can efficiently perform. Within a

seru system, each seru has its own skill set, which is a subset of the skill structure. A skill vector

is used to represent a skill set. The seru system has a set J = {1,2, . . . , J} of assembly skills. Each

seru i ∈ I has its own skill vector si = (s1i , . . . , s
j
i , . . . , s

J
i), where s

j
i = 1 if seru i has skill j, and 0

otherwise. j ∈J and j = 1, ..., J is the index of skills.

Products, especially those with modular architectures, can be described by their components,

some of which satisfy customers’ preferences (Swaminathan and Tayur 1998, Jiang et al. 2006,

Mendelson and Parlaktürk 2008). Some studies assume that the relationship between a skill and

a component is one-to-one (Swaminathan and Tayur 1998, Baldwin and Clark 2000). This means

that any component, say j, can only be produced or assembled by using its associated skill j. Then

j is the index for both skills and components. This paper follows the above assumption.

O is the set of orders. Each order o∈O is defined by a component vector, vo = (v1o , . . . , v
j
o, . . . , v

J
o),

where vjo = 1 if order o requires component j, and 0 otherwise. The component vector has the same

cardinality as the skill vector. It is easy to see that when seru i can assemble order o, then for any

skill j ∈J , if vjo = 1, then sji = 1. For simplicity, define αio = 1 if seru i can assemble order o, and

0 otherwise. Go is the set of serus whose skills can assemble order o, Go = {i ∈ I : αio = 1}. The

demand for order o is do.

3.1. Profit Function

The objective is to maximize the profit of a seru system. Let x= (x1, . . . , xi, . . . , xI) be the initial

seru system capacity at the beginning of a period. Capacity is a continuous variable (hours or

8

Table 2 Notation
Sets and Parameters

(Ω,F , P) Probability space of orders
I Set of serus, indexed by i= 1, ..., I
J Set of assembly skills/components, indexed by j = 1, ..., J
O Set of orders, indexed by o
sji Indicator parameter, which equals 1 if seru i has skill j, and 0 otherwise
vjo Indicator parameter, which equals 1 if order o requires component j, and 0 otherwise
αio Indicator parameter, which equals 1 if seru i can assemble order o, and 0 otherwise
Go Set of serus whose skills can assemble order o, Go = {i∈ I : αio = 1}
λo Cardinality of set Go, λo = |Go|
do Number of products required for order o
τo Total processing time for one product of order o
ao Time interval between the arrival times of orders o and o+1
cj Labor cost of assembly skill j
pj Revenue from component j
si Skill vector of seru i, si = (s1i , . . . , s

j
i , . . . , s

J
i), where s

j
i = 1 if seru i has skill j, and 0 otherwise

vo Component vector of order o, vo = (v1o , . . . , v
j
o, . . . , v

J
o),

where vjo = 1 if order o requires component j, and 0 otherwise
ei Labor cost of seru i, ei =

∑J

j=1 cjs
j
i

bo Revenue from one product of order o, bo =
∑J

j=1 v
j
opj

bmax Highest revenue from one product of any order in set O, bmax =max{bo : o∈O}.
bmin Lowest revenue from one product of any order in set O, bmin =min{bo : o∈O}.
mmax Maximum profit margin achievable by any seru i, mmax = (bmax− ei)/bmax where i∈ I.
mmin Minimum profit margin achievable by any seru i, mmin = (bmin− ei)/bmin where i∈ I.
ri Rank assigned to seru i, which prioritizes the serus for an order
ω Sample path of (Ω,F , P), ω= {vo ∈Ω|o∈O}
E Expectation operator on the probability space (Ω,F , P)
IM Indicator of mathematical statement M , which equals 1 if M is true, and 0 otherwise
m̃ For any order o, the remaining capacity of serus whose ranks are higher than seru i,

m̃= x[1]
o +x[2]

o + · · ·+x[ri−1]
o

m For any order o, the remaining capacity of seru i and serus whose ranks are higher than seru i,
m= x[1]

o +x[2]
o + · · ·+x[ri]

o = m̃+x[ri]
o

βj Increase of the initial capacity of seru j, βj = x̂j −xj and x̂j ≥ xj.
Decision Variables

xi Initial capacity of seru i
x Initial capacity of a seru system, x= (x1, x2, . . . , xI)
xo Remaining capacity of a seru system before the arrival of order o, xo = (x1

o, x
2
o, . . . , x

I
o),

where xio is the remaining capacity of seru i before the arrival of order o
Functions
qo(x,ω) Capacity consumed by order o on sample path ω, when initial capacity is x,

qo(x,ω) = (q1o(x,ω), . . . , q
i
o(x,ω), . . . , q

I
o(x,ω)),

where qio(x,ω) is the capacity of seru i that is consumed to assemble order o
R(x,ω) Profit produced by a seru system by sample path ω, when initial capacity is x
Uo Remaining production requirements of order o
Wi Remaining capacity of seru i

P (o,x) Profit obtained by assembling order o under initial capacity x
A(o,x) Set of serus with which order o is assembled under initial capacity x
cr Competitive ratio, the ratio of the possible minimum profit to the possible maximum profit,

cr= mmin
mmax

× 1−mmax
1−mmin

.

minutes). For example, for a 3-day period, if x1=8 hours and x2=72 hours, then seru 1 is closed

after 8 hours and seru 2 operates during the entire period.

A seru system’s cost is calculated using a skill-based labor cost system. Let cj denote the labor

cost for skill j (i.e., hourly wage). Then the labor cost of seru i is ei =
∑J

j=1 cjs
j
i . Let pj denote

the revenue from component j. Then the revenue from one product for order o is bo =
∑J

j=1 v
j
opj.

Let (Ω,F , P) denote a probability space of orders, where Ω is a sample space of orders. F and

P are the σ-algebra and probability measure of this probability space, respectively. Let ω be a

sample path of (Ω,F , P). The number of orders on sample path ω is denoted as O. That is, there

is a set O = {1,2, . . . ,O} of orders and ω = {vo ∈ Ω|∀o ∈ O}. During a production period, orders

with stochastic demands arrive over time. When there is not enough remaining capacity to entirely

assemble a newly arrived order o within the production period, this order is assembled as much

as possible until the remaining capacity of serus in Go becomes 0.

Let xo = (x1
o, . . . , x

i
o, . . . , x

I
o) denote the remaining capacity of the seru system before the arrival

of order o. Obviously, xi1 = xi, i.e., the remaining capacity before the arrival of the first order is

9

the initial capacity. Define qo(x,ω) = (q1o(x,ω), . . . , q
i
o(x,ω), . . . , q

I
o(x,ω)) as the capacity consumed

by order o on sample path ω when the initial capacity of the seru system is x, where qio(x,ω) is

the capacity of seru i that is consumed to assemble order o. R(xi, ω) =
∑

o∈O bo[q
i
o(x,ω)/τo]− eixi

is the profit function of seru i, where τo is the processing time for one product of order o. The

profit function of the seru system is as follows.

R(x,ω) =
∑
i∈I

R(xi, ω) =
∑
i∈I

∑
o∈O

bo[q
i
o(x,ω)/τo]−

∑
i∈I

eix
i. (1)

Let E be the expectation operator defined on the probability space (Ω,F , P). Then the objective

of the dynamic JIT-OS problem is to maximize expected profit: maxx≥0E[R(x,ω)].

3.2. Evolution of the Dynamic JIT-OS

A ranking system is used to assign orders to serus. Upon the arrival of a new order o, each seru i

is given a rank ri, arranging the serus in order of priority for handling order o. The seru capable

of assembling order o with the lowest labor cost receives the top rank, 1, followed by the others

in ascending order. Specifically, the serus in the set Go are ordered from the lowest to the highest

labor costs, producing a sequence e[1] ≤ e[2] ≤ · · · ≤ e[λo]. Here, seru [1] ∈ Go incurs the least cost

and is thus prioritized with the highest rank. Conversely, seru [λo] is ranked last with the rank

number λo, which is the cardinality of set Go, λo = |Go|. The rank ri is then defined as follows.

ri =

 k, if αio = 1, and ei = e[k],

λo+1, if αio = 0.
(2)

On a sample path ω, a total of O orders arrive over time. As the period progresses, the evolution

of the JIT-OS undergoes two related directions: a monotonic increase in the quantity of assembled

products,
∑

o∈O qo(x,ω), and a monotonic decrease of seru capacity, x. In detail, the capacity of

a seru system diminishes incrementally, from x= x1 (the initial capacity prior to the first order’s

arrival) to x2 (the capacity before the second order’s arrival), and so on. This evolution continues

until all orders are scheduled and the capacity of the seru system is xO+1 (the capacity after

assembling order O). This evolution of capacity is calculated using xio+1, the capacity of seru i

before the arrival of order o+1, from xio as follows.

xio+1 =


Idoτo≤ao(xio− ao)+ + Idoτo>ao(xio− doτo)+, ri = 1;

Idoτo<m̃(xio− ao)+ + Im̃≤doτo<m(x
i
o−max{doτo− m̃, ao})+ + Idoτo≥m0, 1< ri ≤ λo;

(xio− ao)+, ri = λo+1,

(3)

where IM denotes the indicator of mathematical statement M , which equals 1 if M is true, and 0

otherwise, (·)+ is the nonnegative value, do is the number of products required for order o, ao is

the time interval between the arrival times of orders o and o+1, m̃ is the total remaining capacity

of serus with ranks higher than seru i (m̃= x[1]
o +x[2]

o + · · ·+x[ri−1]
o), and m is the total remaining

10

capacity of seru i and the serus whose ranks are higher than seru i (m= x[1]
o + x[2]

o + · · ·+ x[ri]
o =

m̃+x[ri]
o).

By the definition of qio(x,ω) given in Section 3.1, qio(x,ω) is calculated as follows.

qio(x,ω) =


Idoτo<xiodoτo+ Idoτo≥xiox

i
o, ri = 1;

Idoτo<m̃0+ Im̃≤doτo<m (doτo− m̃)+ Idoτo≥mxio, 1< ri ≤ λo;

0, ri = λo+1.

(4)

4. Flexibility and Efficiency of a Seru System

Diniminishing returns and substitution effect are key properties of submodular functions (Milgrom

and Strulovici 2009). We elucidate the relationships between efficiency and diminishing returns,

and flexibility and substitution in submodular functions using a simple example.

• Efficiency and Diminishing Returns in Submodular Functions

Adding a display to a PC enhances our computing experience. The cost of this display is low

compared to the substantial benefit it adds, resulting in high efficiency and a strong benefit mar-

gin. However, if we add more displays—second, third, fourth, and so on—efficiency declines. Each

additional display still offers benefits, such as better multitasking capabilities, but the incremen-

tal benefit becomes smaller over time. This diminishing returns means that each new display

contributes less to the overall benefit than the previous display. The marginal benefit of adding

another display may become smaller than its cost, leading to a situation where adding more dis-

plays results in negative profit. At this point, costs outweigh benefits, illustrating now diminishing

returns in submodular functions directly impacts efficiency.

• Flexibility Through Substitution in Submodular Functions

Adding multiple displays to our PC increases the system’s flexibility, since it can swiftly adapt

to unexpected changes or failures, maintaining functionality and performance under uncertainty.

With multiple displays, if one display malfunctions or becomes unavailable, others can seamlessly

substitute for it, ensuring that the PC system can continue to operate without interruption. This

ability to substitute one component for another without significantly degrading performance is a key

benefit of substitution in submodular functions. Such flexibility is valuable in dynamic environments

where reliability and adaptability are important.

• Trade-off between Efficiency and Flexibility in Submodular Functions

This example of adding multiple displays to a PC highlights a trade-off between flexibility and effi-

ciency inherent in submodular functions. On one hand, increasing the number of displays enhances

the system’s flexibility to maintain functionality in uncertain or changing environments. On the

other hand, as more displays are added, efficiency declines because of the diminishing returns,

eventually leading to negative profits when costs surpass benefits. Decision-makers should balance

efficiency and flexibility to ensure that systems remain both economically viable and capable of

adapting to changing environments.

11

The flexibility and efficiency trade-off in a dynamic JIT-OS seru system is investigated using

submodular theory. Flexibility refers to the ability to quickly respond to uncertain demands.

Efficiency refers to meeting demands with minimal costs. This trade-off implies that a highly

efficient seru system may lack the ability to respond to changing conditions. Or a highly flexible

seru system may compromise efficiency to retain its adaptability. Hence, it is useful to find a

balance between efficiency and flexibility that aligns with the goals of a seru system.

This trade-off, resulting from variability, can’t be eliminated but can be managed through strate-

gic decisions such as seru capacity and order assignment, as explored in this paper. We demonstrate

this trade-off with two straightforward examples. In terms of capacity (comparable to inventory

management where too much inventory may lead to excess stock and too little may result in lost

sales), having too much capacity can lead to high costs from underutilization, while having too

little can reduce flexibility.

• Example 1: Highly Flexible versus Highly Efficient Seru Systems

Consider a seru system consisting of two serus: seru 1 specializes in skill 1, and seru 2 in skills 1

and 2. The cost for and revenue from each skill and component are $100 and $120, respectively.

Capacities of 1 and 19 are allocated to serus 1 and 2, respectively, for a highly flexible system,

and 14 and 6 for a highly efficient system, maintaining total capacity at 20 for both systems. The

flexible system allocates greater capacity to seru 2, which handles multiple skills, enhancing its

adaptability. The efficient system prioritizes lower cost, with a total cost of $2,600 compared to

$3,900 for the flexible system. During the period, two orders arrive: the first order needs component

1 with a volume of 10. The second order requires components 1 and 2, also with a volume of 10,

making the total demand 20. The highly flexible system can fulfill all 20 units of demand at a

loss of (10× 120+ 10× 240)− (1× 100+ 19× 200) =−$300. The highly efficient system can only

meet 16 units of demand, resulting in a profit of (10× 120+6× 240)− (14× 100+6× 200) = $40.

Thus, the highly flexible system achieves a 100% service level (highest responsiveness) but incurs

a financial deficit (low efficiency). The highly efficient system sacrifices flexibility and potential

sales, achieving a 16/20 = 80% service level. Another metric, the competitive ratio, is now defined

as the actual profit relative to the maximum possible profit obtainable under the static JIT-OS

mode. Specifically, this static JIT-OS mode utilizes the capacity of serus 1 and 2 at 10 units each

to fulfill orders 1 and 2, respectively, achieving the highest profit of (10× 120+ 10× 240)− (10×

100 + 10× 200) = $600. Even though the highly efficient system is financially viable, its realized

profit competitive ratio is only 40/600 = 6.7%, indicating poor performance. Therefore, managing

the capacity trade-off (similar to applying the newsvendor model to inventory issues) is crucial to

improve the competitive ratio.

Order assignment can also significantly influence the performance of a dynamic JIT-OS.

• Example 2: Order Assignment in a Seru System

In continuation of Example 1, suppose that supply-demand capacities are perfectly matched within

the seru system, and both serus 1 and 2 are allocated a capacity of 10 each. Assigning orders 1

12

and 2 to serus 1 and 2, respectively, allows the maximum profit of $600, achieving a 100% service

level—a perfect balance of efficiency and flexibility. Conversely, if order 1 is assigned to the highly

flexible seru 2, the resultant profit and service level plummet to 1200− 3000 =−$1,800 and 50%,

respectively, illustrating the poorest balance. (Note that seru 1 lacks the skills required to assemble

order 2.)

Examples 1 and 2 highlight that although having multiple parallel serus increases the system’s

flexibility to manage a variety of customer orders, suboptimal managerial decisions can undermine

this benefit, leading to adverse outcomes. This section delves into the structural dynamics of this

trade-off within a general dynamic JIT-OS framework. Effective decision-making strategies are

presented in Sections 5, 6 and 7.

The substitution effect of submodularity enables the flexibility to allocate serus to respond to

uncertain demands. The diminishing returns of submodulairty provides direction for efficiency

improvement in seru utilization. The substitution effect means that managers can change the

allocation of serus to meet demand. The diminishing returns demonstrates the phenomenon of

the decline of marginal seru system value when adding more capacity to a specific seru. For a

comprehensive explanation of the substitution effect and the diminishing returns, see Milgrom and

Strulovici (2009) and Kapralov et al. (2013). A review of submodular optimization definitions is

in Section EC.1 of the online Appendix.

4.1. Flexibility of a Seru System is Automatic

Flexibility of a seru system is investigated using Lemma 1 and Theorem 2. All proofs for Lemmas

are in Section EC.4 of the online Appendix.

Lemma 1. For order o assembled on an arbitrary sample path ω, capacity consumption qio(x,ω)

of seru i is submodular and exhibits diminishing returns with respect to the initial capacity of

another seru j (i ̸= j).

Capacity consumption of seru i, qio(x,ω), is examined using Lemma 1. All subsequent results

of this section are based on and extensions of Lemma 1, which says that qio(x,ω) is a submodular

function. Thus qio(x,ω) possesses the substitution effect (Milgrom and Strulovici 2009), which

means that one input can be substituted by another input. For a seru system, this means that

a portion of the initial capacity of seru i (xi) can be replaced by some of the initial capacity

of another seru j (xj) with the effect of using the capacity to meet customer orders. Specific

conditions under which capacity of one seru can be substituted by capacity of another seru are in

Lemma EC.8.

The most significant managerial insight from Lemma 1 is its highlight on the flexibility of

seru systems. As discussed in Section 1, seru systems exhibit greater flexibility and adaptability in

comparison to TPSs, especially in volatile markets characterized by frequently changing product

models, fluctuating volumes, and short product life cycles. TPSs typically use a long assembly line

that can be disrupted because of frequent changes, unlike seru systems. Lemma 1 suggests that

if seru i is unable to accommodate changes in product models or volumes, another seru j can
13

substitute i to adapt to these changes. The ability to use different serus to accommodate changing

demands is a key aspect of JIT-OS.

Insights derived from Lemma 1 are further expanded in Theorem 2.

Theorem 2. For an arbitrary sample path ω, total capacity consumption
∑

o∈O q
i
o(x,ω) of seru

i is submodular and exhibits diminishing returns with respect to the initial capacity of an arbitrary

seru j (i ̸= j).

During a production period, orders arrive one by one. Lemma 1 focuses on analyzing a single

order o that arrives at a specific point in time. Theorem 2 says that submodularity and diminishing

returns apply to all orders along an arbitrary sample path throughout the production period.

The significance of Theorem 2 lies in highlighting dynamic flexibility during the production

period. This means that managers can utilize alternative serus dynamically to accommodate

demand changes during a production period. The ability to quickly respond to changing demand

is a crucial advantage of seru systems. Theorem 2 provides a theoretical foundation to explain this

dynamic flexibility.

4.2. Efficiency of a Seru System is Not Automatic

Efficiency in a seru system requires deliberate design and strategic management. We now explore

how initial capacities of serus influence system profit and demonstrate that efficiency emerges only

from a careful allocation of resources. We begin by examining the inherent diminishing returns in

a seru system because of the arbitrary nature of serus in Theorems 3.

Theorem 3. For an arbitrary sample path ω, profit R(xi, ω) from seru i is submodular and

exhibits diminishing returns with respect to the initial capacity of another seru j (i ̸= j).

Since both serus i and j are arbitrary, diminishing returns exists in the seru system as noted

in Theorem 3. Because the sum of submodular functions is also submodular (see Lemma EC.1

in the online Appendix), the profit of seru system R(x,ω) =
∑

i∈IR(x
i, ω) is submodular. This

implies that increasing the capacity of a seru can reduce the system’s marginal profit, because

Theorem 3 shows that profit of a seru system is submodular and exhibits diminishing returns, and

because submodularity literature such as Milgrom and Strulovici (2009) has demonstrated that

diminishing returns implies the reduction of marginal benefit from an additional input. Theorem 3

indicates a decline in efficiency, similar to the example of adding multiple displays to a PC.

The key insight from Theorem 3 is that efficiency in a seru system is not automatic. As we have

shown in the example of adding multiple displays to a PC and Section 4.1, automatic would imply

that adding capacity to a seru system can improve performance (flexibility in Section 4.1) of a seru

system. However, Theorem 3 shows that adding capacity to a seru system can reduce efficiency,

because profit margin may become negative, like the example of adding multiple displays to a

PC. If a manager adds more displays to a PC, the benefit from an additional display can become

smaller than the cost of the display, resulting in negative profit margin. Efficiency is defined in

Section 2.2 as the gap between output (benefit in the PC example) and input (cost in the PC
14

example). Negative profit margin means that efficiency is low. So, efficiency in a seru system is not

automatic just by adding more capacity. Managers should carefully determine the initial capacity

of each seru to maximize profit. This is illustrated in Example 1, where both highly flexible and

highly efficient systems are suboptimal. Instead, a balanced system (with capacities of 10 for both

serus 1 and 2) yields the highest profit.

Next, we explore how to improve efficiency by leveraging the substitution effect property of

submodular functions in Theorem 4.

Theorem 4. For an arbitrary sample path ω, profit R(xi, ω) from seru i is submodular and

exhibits strictly diminishing returns with respect to the initial capacity of another seru j (i ̸= j),

provided that for an order o on ω, rj < ri ≤ λo and m≤ doτo ≤m+ βj. This indicates that seru

j can efficiently substitute for seru i in fulfilling order o, resulting in increased efficiency in the

system.

Here, βj represents additional amount of capacity added to seru j. The distinction between

diminishing returns and strictly diminishing returns lies in the rate at which marginal profit

decreases. In the case of diminishing returns, the additional amount of capacity results in a smaller

or equal decrease in marginal profit. For strictly diminishing returns, the additional amount of

capacity leads to a strictly smaller decrease in marginal profit.

Theorem 4 highlights that profit from seru i exhibits strictly diminishing returns with respect

to the initial capacity of seru j. This means two things. First, both serus i and j are mutually

substitutable in fulfilling order o, because rj < ri ≤ λo indicates that rj ≤ λo and ri ≤ λo are both

true. Second, using seru j to replace seru i to assemble order o improves efficiency, because rj < ri

says that seru j is cheaper than seru i.

Comparison of Theorems 3 and 4 highlights the fact that efficiency is not a given and automatic

outcome. To achieve efficiency, the JIT-OS should be designed carefully. Theorem 3 implies that

seru j can replace seru i, regardless of whether this seru j has a higher or lower labor cost than

seru i. On the other hand, Theorem 4 shows that efficiency can only be achieved by using a lower

cost seru to replace a higher cost seru. Efficiency can be achieved by using our designed allocation

rules (rj < ri). Hence, the problem of “how” to design a seru system to achieve high efficiency is

crucial, which is explored next.

The findings from Sections 4.1 and 4.2 are summarized in Managerial Insight 2.

Managerial Insight 2: In dynamic uncertain environments, optimizing the efficiency of a seru

system is significantly more challenging than in static stable environments. The responsiveness of

a seru system remains inherently automatic because of its flexible structure, where multiple serus

(e.g., i, j, and others) can substitute for one another to handle unpredictable orders.

4.3. Further Analysis on Randomness and Comparisons of Seru Systems and TPSs

The robustness of the theories established in Sections 4.1 and 4.2 are now addressed under condi-

tions of uncertainty. Comparison between a seru system and a TPS line is provided.

Remark 1. The expectation of capacity consumed by a seru i (Eω [qi0(x,ω)]) is submodular.
15

Remark 1 follows directly from Lemma 1 and Milgrom and Roberts (1990), who established

the principle of “The expectation of a submodular function is submodular”. They demonstrated

that analyzing an instance of a submodular function is equivalent to analyzing the function under

uncertainty. This conclusion has been used in operations management literature (Simchi-Levi and

Wei 2012, Zacharias and Pinedo 2017, Hu and Zhou 2022), where submodular and supermodular

functions are used to analyze problems under uncertainty. Our analysis in this section follows this

method stream.

Lemma 1 says that the capacity consumption function of a seru qio(x,ω) is submodular and

exhibits diminishing returns for a given sample path ω. However, Lemma 1 does not account for

the level of uncertainty or demand volatility. Eω [qi0(x,ω)] is the average capacity consumed by seru

i across all possible sample paths, providing insights into the system’s adaptability under varying

levels of demand uncertainty, regardless of specific demand realizations. Such system adaptability

is a strength of a seru system, enabling it to efficiently respond to a wide range of demand scenarios.

Next, we compare the seru system with a TPS assembly line.

Remark 2. A TPS assembly line lacks submodularity.

This observation is derived from Lemma 1 and the definition of submodularity, which imply

that a variable i (seru or line in this paper) can be substituted by another varaible j. For a TPS

assembly line, there is only one variable, the TPS assembly line. A TPS assembly line cannot

substitute with itself. So, a TPS assembly line does not possess the submodular properties of

substitution and diminishing returns.

To compare the performance of a seru system with a TPS assembly line under highly uncertain

environments, consider the context ofmaximum randomness as defined in Factory Physics (Hopp

and Spearman 2011). In this scenario, every possible demand situation is equally likely to occur,

making it difficult to predict actual demand. For details, see Chapter 7 of Hopp and Spearman

(2011). Both a TPS assembly line and a 2-seru system have identical operational conditions under

maximum randomness. Comparative results are summarized in Remark 3.

Remark 3. Under maximum randomness, consider a customer order for w products, each

requiring N operations. Both a TPS assembly line and a 2-seru system are balanced, with each

comprising N workers who have identical processing speeds of 1/t per operation (= t time to com-

plete each operation). In the TPS line, each worker is responsible for a single operation. In the

2-seru system, each worker manages two operations within a seru. Under these identical condi-

tions, the 2-seru system outperforms the TPS line by achieving a cycle time that is shorter by t

time.

Hopp and Spearman (2011) (page 230) defines cycle time as the average time required to assem-

ble a product. Cycle times are (N + w − 2)t and (N + w − 1)t (time per product) for a 2-seru

system and TPS line, respectively. Details on deriving these cycle times are in Appendix EC.5.

Notice that the maximum performance improvement ratio is 50% when N = 2 and w = 1 (where

w is a batch, with each seru assembling half of the batch).

16

In summary, flexibility refers to the capability of a system to adapt its operations to quickly

respond to uncertain demands. Remark 1 shows that the substitution effect of a seru system is

robust under uncertain conditions. Remark 2 demonstrates that a TPS line lacks such substitution

effect. Finally, Remark 3 illustrates that a 2-seru system outperforms a TPS line under high

uncertainty, achieving up to a 50% reduction in cycle time.

Next, to compare TPS lines with seru systems under the dynamic JIT-OS mode, the condi-

tions of the Penny Fab One example presented in Section 2.2 are relaxed. Static JIT-OS mode is

transitioned to dynamic JIT-OS mode.

• Dynamic Version of Penny Fab One

The original scenario of one customer ordering 12 products in Section 2.2 is changed to 12 inde-

pendent customers, each ordering one product. In this scenario, customer arrival time is maximum

random, meaning that the arrival time of each customer is equally likely to occur at any time

from 0 to ∞. Two service metrics used to evaluate the performance are lead time and inventory

availability (Cachon and Terwiesch 2017). For a dynamic JIT-OS production system, cycle time

and response rate are the two service metrics.

Response rate is the probability or frequency of serving a customer with an assembled product

when they arrive. The cycle time is approximated with a normal distribution. The cycle time of

the TPS line is µline =
(8+10+···+30)

12
= 19 hours per product with a standard deviation of σline = 6.9

hours per product. The cycle time of the 4-seru system is µseru =
(8+16+24)×4

12
= 16 hours per product

with a standard deviation of σseru = 6.53 hours per product. The 4-seru system achieves a 15.79%

shorter cycle time than the TPS line.

For the response rate, suppose that a customer arrives at time t ≥ 0. The standard normal

distribution value of t is z = t−µ
σ
. Response rate is given by Φ(z). The 4-seru system outperforms

the TPS line in terms of response rate, since zseru =
t−µseru
σseru

> zline =
t−µline
σline

. For example, if t= 19

hours, the response rate of the TPS line is Φ(zline = 0) = .5, and the response rate of the 4-seru

system is Φ
(
zseru =

3
6.53

)
= .68. The 4-seru system achieves a 36% higher response rate than the

TPS line. The seru system’s superior response rate results from its shorter cycle time, µseru, and

lower standard deviation, σseru.

The findings from Section 4.3 are summarized in Managerial Insight 3.

Managerial Insight 3: In highly uncertain environments, a seru system’s responsiveness remains

robust because of its inherent substitution effect. This enables seru systems to outperform TPS

lines by achieving shorter cycle times and higher response rates.

Finally, to illustrate the efficiency and responsiveness of seru systems under maximum random-

ness, the performance of various seru systems is plotted in Figure 1.

• Efficiency versus Responsiveness of Seru Systems under Maximum Randomness

The horizontal axis is the number of serus in the system. The left and right vertical axes give

the response rate and the efficiency of the serus, respectively. As discussed in Section 4.1, response

rate of a seru system increases with the number of serus. In Figure 1, one line and four serus

17

Figure 1 Trade-off between efficiency and response rate when a customer arrives at 19 hours.

represent the TPS line and 4-seru system in the Penny Fab One example. 3 serus means that

there are 2 yatais with 1 worker each and the 3rd seru has 2 workers. All systems are balanced,

with the same number of four workers.

Workers are trained in advance to perform all tasks required at their workstations. Each seru

system uses four identical workers. These training costs are included in the seru formation costs.

Efficiency is calculated based on the construction cost of each seru system. Total wages of each

system are fixed at 100,000 JPY per day (approximately $667 per day, based on an exchange rate

of $1 = 150 JPY). The first seru needs to set up four workstations and provide all necessary tools

at each. This initial cost is assumed to be 20,000 JPY. Therefore, the total cost to build one seru

is 120,000 JPY. Efficiency can be represented as the reciprocal of cost (Cachon and Terwiesch

2017). The efficiency of 1-seru system is 1
120,000

.

When these four workers are assigned to two serus, each seru contains two workers. Each worker

has mastered the skills for both workstations. Creating two serus increases the need for more tools,

resulting in extra costs. Assuming these additional tooling costs are 24,000 JPY, the total cost is

120,000 + 24,000 = 144,000 JPY. The efficiency of a 2-seru system is 1
144,000

.

To construct three serus with the same four workers, one seru has two workers, and the other

two yatais each has one worker. In this case, with additional tooling costs of 24,000 JPY, the total

cost is 144,000 + 24,000 = 168,000 JPY. The efficiency of the 3-seru system is 1
168,000

. When four

yatais are constructed, with additional tooling costs of 24,000 JPY, the total cost is 192,000 JPY.

The efficiency is 1
192,000

.

Figure 1 shows that response rate increases with the number of serus, while efficiency decreases.

This result is summarized in Managerial Insight 4.

Managerial Insight 4: There is a trade-off between efficiency and responsiveness in seru systems.

5. Decisions on the Initial Capacity Level and Order Assignment

This paper investigates two questions: the “why” and “how” of seru systems. The “why” question

is the efficiency-flexibility trade-off discussion in Section 2.2 for static JIT-OS and in Section 4

for dynamic JIT-OS. The “how” question focuses on methods to enhance efficiency in a seru

18

system, as discussed in Sections 5, 6, 7 and the online Appendix. The first “how” problem that

managers face when creating a cost-efficient seru system is determining the initial capacity levels,

x= (x1, x2, ..., xI), to maximize profit. To determine the best x, concavity of profit function R(x,ω)

is analyzed. However, Theorem 5 states that the profit function is not quasiconcave.

Theorem 5. There exists a sample path ω where R(x,ω) is not quasiconcave.

Finding the global optimum of non-quasiconcave functions efficiently remains an open question

in optimization. Non-quasiconcave functions are difficult to optimize because they have multiple

local optima. To address this issue, a Stochastic Gradient Algorithm (SGA) is developed that

seeks stationary points of the expected profit function. Details are in Section EC.2.1 of the online

Appendix.

The second “how” problem, creating a cost-efficient dynamic seru system, is to determine how

to allocate one-by-one arriving orders among one or more serus. First-come-first-served (FCFS) is

usually used to schedule in this dynamic system. FCFS is reasonable in practice because a primary

objective of dynamic JIT-OS is quick response. FCFS is simple and straightforward and can be

implemented quickly. In a period where all orders are urgent, quick response times are important.

FCFS allows the seru system to usually start working on orders as they arrive, without waiting

for scheduling decisions or optimizations. Unfortunately, how to optimally allocate one-by-one

arriving orders among one or more serus is computationally difficult to solve unless NP=P. Order

assignment for the dynamic JIT-OS is proved to be NP-hard in Theorem 6.

Theorem 6. Order assignment for the dynamic JIT-OS Problem is NP-hard.

Theorem 6 is extended to Theorem 7 to show the hardness of creating an approximation

approach.

Theorem 7. It is NP-hard to approximate optimal order assignment for the dynamic JIT-OS

Problem within a factor better than 1− 1/e.

To better allocate orders, a Labor Cost Minimization (LCM) Algorithm is proposed. Since

profitability is inversely related to costs for any order, minimizing costs maximizes profits. Denote

Uo as any remaining production requirements of order o that have not yet been satisfied, Wi as

the remaining capacity of seru i, P (o,x) as the profit obtained by assembling order o under initial

capacity x, and A(o,x) as the set of serus with which order o is assembled.

Labor Cost Minimization Algorithm

Step 1. For new order o, form set Go whose elements are serus that can assemble order o.

Step 2. From Go, among all serus that have positive capacity, select seru i that has the

lowest labor cost for this order. Assemble order o on seru i as much as possible.

Step 3. Update the remaining production requirements that have not yet been satisfied for

order o (Uo), the available capacity of seru i (Wi), profit P (o,x), and current solution

set A(o,x).
19

Step 4. If the production period ends or there is no more seru capacity, STOP. Otherwise,

if the unsatisfied requirements of order o are 0, go to Step 1. Otherwise, go to Step

2.

The LCM Algorithm is an online algorithm that dynamically handles tasks. To evaluate its

worst-case performance, its competitive ratio, CR is calculated. CR is defined as an online algo-

rithm’s worst result against its optimal counterpart, a hypothetical algorithm with full foresight

of all future conditions. See Cormen et al. (2022) for details. In this paper, CR is the ratio of

the possible minimum profit to the possible maximum profit. This comparison, focusing on the

most extreme scenarios, is useful to understand the robustness of the LCM Algorithm to meet

unforeseen future orders.

Define bmax as the highest revenue obtained from any order in set O, and bmin as the lowest,

within a sample path ω. mmax is the maximum profit margin achievable by any seru i, calculated

as (bmax− ei)/bmax. Similarly, mmin is the minimum profit margin, determined by (bmin− ei)/bmin.

The worst-case analysis is detailed in Theorem 8.

Theorem 8. For any seru, the LCM Algorithm has a competitive ratio of

CR=
mmin

mmax

× 1−mmax

1−mmin

. (5)

This CR falls below 1. A higher value indicates superior online algorithm performance. The CR

in this paper is margin-dependent. A constant CR is often preferred because it offers a uniform

performance guarantee, simplifying the evaluation and comparison of different algorithms. This

consistency makes it easier to benchmark and understand an algorithm’s efficacy across diverse

scenarios. However, certain online problems, particularly those centered around revenue optimiza-

tion, present challenges in establishing a constant CR. This difficulty arises because the objective

functions in these problems are intricately tied to specific input parameters, such as the varying

profit margins, which influence optimization decisions, making the algorithm’s performance highly

input-sensitive. Consequently, input-dependent CRs become essential in these contexts, which can

provide a more accurate and realistic performance measure tailored to the specific operational

environment and leverage the detailed structure of the input to optimize revenue more effectively

(A detailed discussion is in the the Appendix, following the proof of Theorem 8).

Typical seru systems cater to innovative products with profit margins ranging from .2 to .6

(Fisher 1997). The theoretical worst-case competitive ratio for the LCM Algorithm could be as

low as .2/.6× .4/.8 = 1/6.

Lemma 2. Assume that for all orders, the highest and lowest profit margins are mmax = .6 and

mmin = .2. Then the worst-case competitive ratio for the LCM Algorithm is 1/6. Also, there exists

an instance of the online order-assignment problem for which the LCM Algorithm achieves exactly

this 1/6 ratio relative to an optimal offline solution. Hence, the worst-case competitive ratio of 1/6

is tight.

Practical operational strategies can significantly improve this ratio to approach nearly 1.

Specifics of these strategies and their impact on competitive ratios are elaborated in Section 7.
20

6. Comparisons and Near-Optimal Performance of SGA

The Stochastic Gradient Algorithm is now validated by comparing its effectiveness with that of

the newsvendor algorithm. SGA offers greater flexibility than a newsvendor algorithm. SGA can

address issues beyond the newsvendor model’s scope, such as when ao > 0, as in Equations 3 and

4. Therefore, in Section 6.1, our performance comparison focuses on problems that are solvable by

both methodologies.

In Section 6.2, we compare the performance of SGA against the global optimum obtained via

offline optimization. SGA is tested with various initial capacity settings to assess its robustness

and optimality gap.

6.1. Comparative Results

The number of orders is modeled as a Poisson distribution with mean λ. The probability of an

order using seru i is P(i), resulting that the number of orders using seru i follows a thinned

Poisson distribution with mean λP(i). For each order o, demand is normally distributed, with a

common mean µ and standard deviation σ. Then the mean total demand for seru i is λP(i)µ. Total

demand’s standard deviation for seru i is
√
λP(i)σ. An order’s demand coefficient of variation is

cvo = σ/µ. The total demand’s coefficient of variation for seru i is cvi = σ/
√
λP(i)µ.

Parameters for experiments are as follows. λ= 8 and µ= 5. Probability P(i) is uniformly set at

1/I, where I = 5 is the total number of serus. The seru system encompasses a set of five distinct

skills. The skill sets from seru one to five are {1,2},{2,3},{3,4},{4,5},{5,1}. cj (j = 1, ..., J) is the

labor cost of assembly skill j, which is $100 for all skills in our experiment. The skill required for

order o is determined by a discrete uniform distribution ranging from one to five. The processing

time for a single product of an order is uniformly set to one. Market volatility is simulated via cvo.

Higher cvo values indicate increased volatility. Values of cvo of .2, .4, .6, .8, and 1 are investigated.

In the newsvendor model, F (xi) = cu/(cu+ co), where F (x
i) is the probability that demand for

seru i is less than or equal to its initial capacity xi. co is the overage cost that equals cost minus

salvage price. In this paper, the overage cost is labor cost ei. Salvage price is zero, so co = ei.

co = $200, are labor costs of the two skills in each seru. cu = bo− ei is the underage cost, the lost

opportunity cost when demand exceeds prepared capacity. Capacity xi is xi = λP(i)µ+Zi
√
λP(i)σ,

where Zi =Φ−1(cu/(cu+ co)) is the standard normal distribution’s z statistic.

Each experimental scenario is simulated by generating sample paths using three random vari-

ables: number of orders (λ= 8), product type (uniformly chosen from one to five), and each order’s

demand (µ= 5). To capture effects of varying market volatility, ten experiments for each cvo level

(.2, .4, .6, .8, and 1) are conducted. Both SGA and newsvendor use the same LCM Algorithm to

assign orders to serus.

Fisher (1997) indicates that profit margins for innovative products vary between .2 and .6. Our

study examines problems with profit margins set at .33 and .6 to align with these observations.

The experimental results when profit margin is .33 are in Figure 2. Revenue (vj) for using a skill

(j = 1, ..., J) is $300. Average profit of SGA exceeds that of the newsvendor method by 28.7%,

21

highlighting substantial improvement. The data indicates that SGA consistently outperforms the

newsvendor method across all tested levels of market volatility.

Figure 2 Profit comparison of Newsvendor and SGA when profit margin is .33.

A paired-observation t-test was conducted to determine if there is a significant difference in prof-

its generated by the two methods. The null hypothesis for the test is stated as µSGA−µNewsvendor ≤

0, which says that SGA does not yield a higher profit than the newsvendor method. The alterna-

tive hypothesis is that SGA yields a higher profit. The test returned a t-value of 3.96, which is

significantly higher than the critical value of 2.4 at the .01 α-level. The corresponding p-value is

.0001, indicating strong evidence against the null hypothesis. With 49 degrees of freedom, these

results strongly suggest that the average profit from SGA is significantly higher than profit from

the newsvendor method.

The experimental results when profit margin is .6 are shown in Figure 3. In these experiments,

revenue (vj) for requiring a skill (j = 1, ..., J) is $500. Average profit of SGA exceeds that of the

newsvendor method by 13.6%. The t-test returned a t-value of 3.404. The corresponding p-value is

.0007. Again, the results strongly suggest that the average profit from SGA is significantly higher

than profit from the newsvendor method.

Figure 3 Profit comparison of Newsvendor and SGA when profit margin is .6.

The findings show that SGA surpasses the newsvendor method in efficiency by generating higher

profits and demonstrates greater flexibility, accommodating scenarios that the newsvendor method

22

cannot. On the other hand, the newsvendor method is useful for its simple structure. A key

finding in determining capacity levels is that a seru i’s critical ratio F (xi) = cu/(cu+co) equals the

seru’s profit margin (bo − ei)/bo. Idle times lack salvage values, so co = ei. The equality between

F (xi) and profit margin is consistent with practitioners’ intuitive understanding, and provides

practical benefits. Most companies maintain precise profit margin records, making the newsvendor

method implementable for capacity calculations. This finding is particularly advantageous for small

factories who do not have complex capacity management systems. Newsvendor enables manual

and effective capacity planning using profit margins. Insights from the above analysis lead to

Managerial Insight 5.

Managerial Insight 5: SGA surpasses the newsvendor method in performance and flexibility.

SGA is an approach for companies to realize higher profits and accommodate diverse scenarios. In

contrast, the newsvendor method’s simplicity and its intuitive link of service level to profit margin

make it a user-friendly option for capacity planning, especially for small enterprises.

6.2. Near-Optimal Performance of SGA

We now compare the performance of SGA against the global optimum obtained via offline opti-

mization. The purpose of this experiment is described as followed based on the common knowledge

of using SGA to solve non-quasiconcave problems. Using SGA to solve non-quasiconcave problems,

starting from different initial solutions (i.e., initial capacities of serus in this paper) can result in

various outcomes because the optimization landscape can contain multiple local optima, saddle

points, and flat regions. Starting from different initial solutions typically generates a diverse range

of solutions, highlighting the complexity of solving non-quasiconcave problems.

To effectively test the performance of an SGA, it is important to evaluate its performance across

multiple initial solutions. When solutions are constrained to be nonnegative with a mean µ based

on their distribution, a practical and efficient way to test involves using a set of representative

initial solutions: 0 (minimal value), µ (the statistical mean value from the distribution), a large

value (such as twice µ, representing an upper bound), and random values uniformly distributed

between 0 and the large value. These initializations provide a comprehensive sample of the solution

space, enabling the evaluation of SGA’s ability to converge to high-quality solutions consistently.

Thirty experimental sample paths were generated as done in Section 6.1. Interested readers can

contact the authors for our Python code. Parameters that are different from Section 6.1 are λ and

µ. In this section, λ= 10 and µ= 1.05. cvo and profit margin are fixed to 1 and 1/3, respectively.

Other parameters such as the number of serus I are the same as those in Section 6.1. Experimental

results are in Table 3.

Table 3 Profit Summary Table Across Multiple Initial Seru Capacities

30-Sample Optimum 0-Initial µ-Initial Random-Initial 2µ-Initial
Average Profit $10.4 $10.3 $10.1667 $10.2667 $10.1333
Approximation Ratio 100% 99.04% 97.76% 98.72% 97.44%
Success Samples 30 28 26 27 25
Success Rate 100% 93.33% 86.67% 90% 83.33%

23

Table 3 is a summary table across multiple initial seru capacities The Optimum Column of

offline optimization is the benchmark to serve as the best solution and to allow other solutions (the

next 4 columns) to compare with this benchmark to find other solutions’ gaps to this benchmark

solution. The Optimum Column provides the overall global optimum profit for 30 problems. The

4 columns from 0-Initial to 2µ-Initial give SGA’s performance under different initial capacity

settings. 0-Initial: serus start with 0 initial capacities. µ-Initial: serus start with initial capacities of

the statistical mean µ of the distribution, which equals λµ/I = 10 ∗ 1.05/5 = 2.1. Random-Initial:

serus start with random initial capacities ranging between 0 and 4.2. 2µ-Initial: serus start with

twice the average mean = 2 × µ-Initial, which equals 4.2. The metrics evaluated to assess the

performance of each initialization are as follows. Average Profit: Average profit obtained across

30 sample paths. Approximation Ratio: Ratio of the average profit of each initialization to the

global optimum, for example $10.3/$10.4 = 99.04% for 0-Initial SGA. Success Samples: Number

of problems where an initialization achieved the global optimum profit. Success Rate: Percentage

of problems where an initialization achieved the global optimum, for example 28/30 = 93.33% for

0-Initial SGA.

Average Profit is important as it evaluates SGA’s ability to consistently generate high-value solu-

tions across diverse experimental scenarios. To assess whether there were statistically significant

differences between the performance of the different initializations, an ANOVA test was imple-

mented on Average Profit. The p-value from the one-way ANOVA was .99, which is far above the

typical significance level of .05. This means that we fail to reject the null hypothesis, indicating no

significant difference between the performance of SGA initializations and the offline optimization.

This result is promising as it statistically confirms that SGA, regardless of the initial condition,

can achieve performance on par with global optimization.

The lowest Approximation Ratio is 97.44% under the 2µ-Initial condition, showing its ability to

closely approach the global optimum. Approximation Ratios for the other SGA variants—99.04%

(0-Initial), 97.76% (µ-Initial), and 98.72% (Random-Initial)—highlight the algorithm’s robust

capability to maintain near-optimal performance consistently.

For 0-Initial, there are two instances where the global optimum was not achieved (28 optima out

of 30 problems). However, gaps between these two instances and the optimal are quite small. In

one instance, the difference from the optimal value is 1, and in the other, it is 2. Thus, the average

distance to optimal is calculated as (1+2)/30 = .1. This gap is also reflected in the Average Profit

difference, where $10.4− $10.3 = $.1 again, highlighting the near-optimal performance of SGA.

7. Discussion of Competitive Ratios

The LCM Algorithm is evaluated by its competitive ratio CR= mmin
mmax

× 1−mmax
1−mmin

. CR assesses the

algorithm’s performance in a worst-case circumstance compared to the optimal solution. Figure 4

shows that CR varies in response to the range between the minimum and maximum profit margins.

For example, consider the contour level CR= .4. This occurs at point A when the maximum profit

margin mmax is .385 and the minimum profit margin mmin is .2, when mmax = .6 and mmin = .375

24

at point B, and when mmax = .493 and mmin = .28 at point C. CR = .4 means that the LCM

Algorithm’s worst-case performance is 60% less than the optimal solution.

Figure 4 Competitive ratio CR with respect to minimum and maximum profit margins.

The CR formula can be used as a strategic tool for managers to preemptively manage and

mitigate risk in worst-case scenarios. Either CR, mmin, or mmax can be calculated, when the other

two are given. For instance, suppose that the highest profit margin within a current product mix

is mmax = .46, and a manager is aiming for a worst-case CR of .9. The CR formula can be used to

compute mmin =
CR×mmax

1−(1−CR)mmax
= .434. This means that the manager should aim for the minimum

profit margin to be at least .434. This enables precise control over product selection and system

performance.

The most unfavorable competitive ratio is 1/6=.17 (upper-left corner in Figure 4), occurring in

a scenario where all capacity is allocated to orders with a profit margin of .2 (because CR= 1/6

is the result of mmin = .2 and mmax = .6. CR = mmin
mmax

× 1−mmax
1−mmin

= .2
.6
× 1−.6

1−.2 = 1/6), leaving orders

with higher profit margins unfulfilled. Such an extreme case can arise under three possible specific

conditions. (1) The seru system is dealing with a wide range of orders, encompassing both the

lowest and highest profit margins, .2 and .6. (2) Orders with the lowest profit margin are processed

before those with the highest. (3) Seru capacity is entirely used by the orders with the lowest

profit margins, leaving no room for more profitable orders.

This worst scenario is highly unlikely as it requires the simultaneous occurrence of all three

stringent conditions, which is rare in practice. Strategic approaches using the CR formula suggest

that there are straightforward ways to increase CR towards an ideal value of nearly 1. These

strategies are designed to balance capacity and order fulfillment, aiming for more effective capacity

utilization by orders with different profit margins.

Figure 4 shows that CR = 1 when mmin = mmax on the diagonal. Typically, a seru system

produces a product category with relatively similar profit margins, such as premium cameras. In

25

situations where a seru system handles a product mix with significant variations in profit margins,

one pragmatic approach to increase CR is to segment the single seru system into multiple systems.

Each system would produce products with similar profit margins, ensuring higher CR within each

system. For instance, a consulted electronics manufacturer employs two production systems to

separately produce high and low profit margin products. (This electronics manufacturer’s products

are an indispensable peripheral for computers. The manufacturer is the largest in the world with

about one-third market share. The first author of this paper consulted with this company on April

22, 2024, at the company’s headquarters in southern China, visiting several of its main factories,

to conduct a production management evaluation for the company.)

Managerial Insight 6: To maintain high efficiency and control risk in worst-case scenarios,

managers should ensure that within a seru system, product types exhibit similar profit margins. If

significant margin disparities exist, subdividing the system into multiple seru systems can increase

CR. This strategic segmentation aligns operational focus with profit optimization.

Managerial Insight 6 contrasts with the traditional Toyota mixed-product assembly line. TPS

permits a diverse range of profit margins but requires similar processing tasks for each product. In

contrast, a seru system flips this approach, requiring products within the system to have similar

profit margins while accommodating a variety of processing tasks.

Subdividing a seru system into multiple systems tailored to specific profit margins may some-

times be challenging. An alternative strategy could be to manage the sequence of customer order

acceptance based on their profit margins, from highest to lowest. For example, a company could use

the first day of the order cycle exclusively for orders with the highest profit margins, followed by

middle-margin orders on the second day, and so forth. Since the LCM Algorithm uses FCFS, this

sequencing ensures that higher-margin orders are prioritized and capacity is optimally allocated

without the need for system subdivision.

Consider a manufacturer of electronic devices who prepares a production period of 4 days for

China’s Double 11 with a make-to-order production mode. During these four days, the company

accepts randomly arriving orders from customers. The company’s products are categorized as

high, medium, and low profit margins. On the first two days, the company accepts orders only for

the high profit margin products. On the third day, it accepts orders only for high and medium

profit margin products. On the fourth day, it accepts the remaining orders for all products. The

company can use the LCM Algorithm to assign orders to serus with FCFS. This tiered approach

to order acceptance allows the company to take advantage of the higher profitability of premier

products while still fulfilling a broad product demand. For example, OpenOrder is a software

application published by FasterCapital, a consulting firm. OpenOrder can be used to manage

customer orders. OpenOrder has many functions. One function prioritizes customer orders based

on customer importance. This can improve profitability. This function has the same mechanism

as our strategy of accepting orders based on profit margins.

26

Managerial Insight 7: When subdividing a seru system is impractical, strategically scheduling

order submissions based on profit margins can be an effective alternative. By aligning order intake

with product profitability, high-margin orders first, followed by those with lower margins, companies

can achieve efficient capacity utilization and profit improvement.

For industry leaders like Nintendo and Apple, with their extensive base of loyal customers and

retailers competing fiercely for their products, the strategy of Managerial Insight 7 is particularly

practical. Given their substantial market influence and negotiation power, these companies can

effectively implement a strategic order acceptance based on profit margins. This allows them to

prioritize high-profit orders, optimizing operational efficiency and maximizing revenue. Essentially,

Nintendo and Apple can manage their supply to meet the most profitable demands first, leveraging

their strong brand positions to enhance both supply chain efficiency and profit margins.

For companies like Fujitsu, NEC, Dell, and HP, which are prominent competitors in the PC

industry, employing Managerial Insight 7 strategy involves more sophisticated tactics. These firms

typically feature online platforms where customers can configure products by selecting from a

variety of available components such as CPUs and GPUs. To implement Managerial Insight 7

strategy effectively, these companies could strategically release component lists in a chronological

order based on profit margins. By doing so, they can prioritize the visibility of high-margin parts,

offering these first and subsequently releasing low-margin components. This approach not only

streamlines product customization but also maximizes profitability by aligning component visi-

bility with potential earnings from each part, improving the probability that the most lucrative

options are sold first. This method enhances the company’s ability to manage supply effectively

while catering to customer preferences in a competitive market.

For small businesses with little competitive strength, securing orders often takes precedence over

strategic order acceptance based on profit margins. These enterprises typically offer a narrow range

of products, with relatively small differences in profit margins between them. Consequently, such

companies can naturally achieve a high CR without the need for complex strategies. For those

small businesses that do experience significant differences in profit margins across their products,

employing the strategy outlined in Managerial Insight 6 could be more advantageous.

8. Conclusion

Seru production systems demonstrate significant adaptability and efficacy to address challenges

posed by market volatility that sometimes disrupts production systems like TPS. Originally

adopted by electronics such as Canon and Sony to manage rapid changes in demand and prod-

uct models, seru has expanded its influence to sectors ranging from food and automotive parts

manufacturing to healthcare and logistics. This versatility is highlighted in its ability to maintain

efficiency and responsiveness through its operational modes: regular, for consistent daily produc-

tion; seasonal, to adapt to peak demand periods; and emergent, to respond to crises like pandemics.

Such adaptability shows that seru systems have capabilities to manage production dynamics,

achieve profitability and responsiveness across diverse market conditions.

27

A seru system is managed by JIT-OS, which incorporates decisions on setting each seru’s capac-

ity and assigning customer orders. JIT-OS operates in two modes: static and dynamic. The static

mode predetermines seru capacities and order assignments, and is optimally solvable in polynomial

time, effectively achieving both responsiveness and efficiency.

In contrast, the dynamic mode deals with real-time incoming orders, adapting flexibly to chang-

ing demands. This mode naturally offers flexibility because of the independence of separate serus. If

one seru cannot satisfy a particular demand, other serus can be quickly utilized to meet this need,

a process explained through the substitution property of submodular functions. However, efficiency

is not automatically assured in dynamic JIT-OS. Selecting a high labor cost seru to fulfill demand

can reduce efficiency, as described by the diminishing returns property of submodular functions.

This leads to a significant “how” question: how can a seru system be designed to enhance effi-

ciency? This design challenge is complex and categorized as NP-hard. To address non-quasiconcave

problems within this context, a convergent stochastic gradient algorithm is developed to find sta-

ble solutions, and for NP-hard issues, an online polynomial-time algorithm is implemented. In our

experimental comparisons, the stochastic gradient algorithm outperforms the newsvendor method

and can generate near-optimal solutions. For the polynomial-time algorithm, we introduce two

strategies that enhance competitive ratios, nearly reaching one in practical applications.

We have provided insights into why and how seru systems are responsive and efficient in volatile

markets, leading to several interesting future research directions. First, The methodologies formu-

lated in this paper can serve as benchmarks for future research. For the submodular profit function,

optimization techniques related to submodularity could enhance algorithm efficiency. Addition-

ally, the SGA explored here could be compared with similar methods such as Newton’s method,

Quasi-Newton methods, and Conjugate Gradient method. Regarding the greedy order assignment

algorithm, which exhibits a competitive ratio of 1/6, further development of online algorithms

could aim to achieve competitive ratios greater than 1/6, pushing the boundaries of current algo-

rithmic efficiency. Second, one particularly important area is the impact of seru systems on supply

chain resilience. The recent emphasis on resilience because of COVID-19 and frequent natural

disasters, like earthquakes in Japan, has highlighted the potential of reconfigurable production

systems. As noted by Cohen et al. (2022) and Ivanov (2023), such systems, especially seru systems,

are viewed as exemplary models for enhancing supply chain resilience. Investigating whether seru

systems can indeed improve resilience presents a compelling research opportunity. Third, another

promising direction is the cross-industry application of seru systems. Although lean principles

are traditionally associated with manufacturing, they have seen successful applications in other

sectors. As introduced in Section 2.1, seru principles have been applied successfully beyond the

manufacturing domain. Exploring these applications across different industries offers an attractive

avenue for research.

Acknowledgments

We are grateful to Department Editor Panos Kouvelis, the Senior Editor, and the three anonymous

28

reviewers for their thoughtful comments and constructive suggestions. Their feedback has substan-

tially improved the clarity, rigor, and overall quality of this paper. This paper was supported by

KAKEN 25K08175, and the Natural Science Foundation of China under Projects 72471169 and

72231005.

References

Baldwin CY, Clark KB (2000) Design Rules: The Power of Modularity, Volume 1 (Cambridge, MA: MIT

Press).

Bendoly E, Bachrach DG, Esper TL, Blanco C, Iversen J, Yin Y (2021) Operations in the upper eche-

lons: leading sustainability through stewardship. International Journal of Operations & Production

Management 41(11):1737–1760.

Boysen N, Fliedner M, Scholl A (2009) Assembly line balancing: Joint precedence graphs under high product

variety. IIE Transactions 41(3):183–193.

Boysen N, Schulze P, Scholl A (2022) Assembly line balancing: What happened in the last fifteen years?

European Journal of Operational Research 301(3):797–814.

Cachon G, Terwiesch C (2017) Operations Management (New York: McGraw-Hill Education).

Cohen M, Cui S, Doetsch S, Ernst R, Huchzermeier A, Kouvelis P, Lee H, Matsuo H, Tsay A (2022)

Bespoke supply-chain resilience: the gap between theory and practice. Journal of Operations Manage-

ment 68(5):515–531.

Cormen TH, Leiserson CE, Rivest RL, Stein C (2022) Introduction to Algorithms (Cambridge, MA: MIT

Press).

de Treville S, Ketokivi M, Singhal V (2017) Competitive manufacturing in a high-cost environment. Journal

of Operations Management 49:1–5.

Editor (2011) Seru production changes the frontlines. Food Plant Manager 175:17–33.

Fisher M (1997) What is the right supply chain for your product? Harvard Business Review 75:105–117.

Gai Y, Yin Y, Li D, Zhang Y, Tang J (2023) Maximizing the throughput of a rotating seru with nonpre-

emptive discrete stations. Naval Research Logistics 70(8):910–928.

Hopp W, Spearman M (2011) Factory Physics: Foundations of Manufacturing Management, 3rd Ed (Boston:

Irwin/McGraw-Hill).

Hopp WJ, Spearman MS (2021) The lenses of lean: Visioning the science and practice of efficiency. Journal

of Operations Management 67(5):610–626.

Hu M, Zhou Y (2022) Dynamic type matching.Manufacturing & Service Operations Management 24(1):125–

142.

Ivanov D (2023) Two views of supply chain resilience. International Journal of Production Research

Latest Articles:https://doi.org/10.1080/00207543.2023.2253328, URL http://dx.doi.org/10.1080/

00207543.2023.2253328, published online: 04 Sep 2023.

Jiang K, Lee H, Seifert R (2006) Satisfying customer preferences via mass customization and mass produc-

tion. IIE Transactions 38(1):25–38.

29

Kapralov M, Post I, Vondrák J (2013) Online submodular welfare maximization: Greedy is optimal. Proceed-

ings of the Twenty-fourth Annual ACM-SIAM Symposium on Discrete Algorithms, 1216–1225 (Society

for Industrial and Applied Mathematics).

Li D, Jiang Y, Zhang J, Cui Z, Yin Y (2023) An on-line seru scheduling algorithm with proactive waiting

considering resource conflicts. European Journal of Operational Research 309(2):506–515.

Mendelson H, Parlaktürk A (2008) Product-line competition: Customization vs. proliferation. Management

Science 54(12):2039–2053.

Milgrom P, Roberts J (1990) The economics of modern manufacturing: Technology, strategy, and organiza-

tion. The American Economic Review 80(3):511–528.

Milgrom P, Strulovici B (2009) Substitute goods, auctions, and equilibrium. Journal of Economic Theory

144(1):212–247.

Mitamura F (2012) Iris Ohyama: Transparent Management Technique (Tokyo: Toyokeizai Publishing Co.).

Mitra D, Mitrani I (1990) Analysis of a kanban discipline for cell coordination in production lines. I. Man-

agement Science 36(12):1548–1566.

Mitra D, Mitrani I (1991) Analysis of a kanban discipline for cell coordination in production lines, II:

Stochastic demands. Operations Research 39(5):807–823.

Roth A, Singhal J, Singhal K, Tang C (2016) Knowledge creation and dissemination in operations and

supply chain management. Production and Operations Management 25(9):1473–1488.

Simchi-Levi D, Wei Y (2012) Understanding the performance of the long chain and sparse designs in process

flexibility. Operations Research 60(5):1125–1141.

Stecke K, Yin Y, Kaku I, Murase Y (2012) Seru: The organizational extension of JIT for a super-talent

factory. International Journal of Strategic Decision Sciences 3(1):105–118.

Sudo K (2019) What is the seru nursing provision method that allows for optimal performance beside the

patient? New Medical World Weekly 3339:1–2.

Swaminathan J, Tayur S (1998) Managing broader product lines through delayed differentiation using vanilla

boxes. Management Science 44(12):S161–S172.

Takano A (2005) Only original factories survive: Part 2—canon’s strategy seen in the acquisition of NEC

machinery. Nikkei Monozukuri 1–2.

Tayur SR (1993) Structural properties and a heuristic for kanban-controlled serial lines.Management Science

39(11):1347–1368.

Wimo (2020) Grand reveal of the manufacturing process: Delivering high-quality coozy. https://www.wimo.

co.jp/blog/manufacturing.

Wu Z, Tong T, Lan Y, Yin Y (2024) The effects of learning and fatigue on pick efficiency. Working Paper .

Yamaha (2024) The scene of seru production by skilled craftsmen. https://global.yamaha-motor.com/

jp/design_technology/craftsmanship/mc/mc2.html.

Yin Y, Chung SH, Ma HL, Li D, Zhang Z, Liu C, Yu Y, Gai Y, Tang J, Kaku I (2025) Seru production

systems. Encyclopedia in Operations Management (Elsevier) Forthcoming chapter.

30

Yin Y, Kaku I, Stecke K (2008) The evolution of seru production systems throughout Canon. Operations

Management Education Review 2:27–40.

Yin Y, Stecke K, Swink M, Kaku I (2017) Lessons from seru production on manufacturing competitively in

a high cost environment. Journal of Operations Management 49:67–76.

Zacharias C, Pinedo M (2017) Managing customer arrivals in service systems with multiple identical servers.

Manufacturing & Service Operations Management 19(4):639–656.

Zhang Z, Song X, Gong X, Yin Y, Lev B, Zhou X (2022) An exact quadratic programming approach based

on convex reformulation for seru scheduling problems. Naval Research Logistics 69(8):1096–1107.

31

e-companion to Author et al.: Responsiveness and Efficiency of Seru Production Systems in Volatile Markets ec1

Appendix

We give some notation that is required. The profit obtained from assembling one product for

order o by seru i is defined as θio = bo− ei, if αio = 1, and −∞, otherwise.

EC.1. Definitions

Now some definitions are given.

Definition EC.1. A set X ⊂ℜn is a lattice if for any x, y ∈X there is x∧ y and x∨ y in X.

The vector x∧y, called the meet, is a vector whose ith component is min{xi, yi}. The vector x∨y,

called the join, is a vector whose ith component is max{xi, yi}.

We extend the definitions of submodular function and diminishing returns in Kapralov et al.

(2013) for a seru capacity system in the following Definition EC.2.

Definition EC.2. Let X ⊂ℜn be a lattice and f :X→ℜ. A vector z ∈X can be represented

as (z−ij, z
i, zj), where zi and zj are respective components i and j of z. Let (z−ij, ẑ

i, ẑj) be the

vector obtained from z by replacing components i and j with respective ẑi and ẑj, where ẑi ≥ zi,

ẑj ≥ zj, and (z−ij, ẑ
i, ẑj) ∈X, (z−ij, ẑ

i, zj) ∈X, (z−ij, z
i, ẑj) ∈X. Function f is submodular and

satisfies diminishing returns on X if and only if

f(z−ij, ẑ
i, ẑj)− f(z−ij, ẑi, zj)≤ f(z−ij, zi, ẑj)− f(z−ij, zi, zj). (EC.1)

It is easy to see that our Definition EC.2 aligns with the concept of submodular functions by

expressing formula (EC.1) as f(z−ij, ẑ
i, ẑj) + f(z−ij, z

i, zj) ≤ f(z−ij, zi, ẑj) + f(z−ij, ẑ
i, zj), which

is the definition of submodular functions. Thus f is submodular and satisfies the diminishing

returns principle (Kapralov et al. 2013). We next extend Definition EC.2 to multiple functions in

Lemma EC.1.

Lemma EC.1. If both functions f and g satisfy diminishing returns on X, then function f + g

satisfies diminishing returns on X.

In the following analysis, Lemma EC.1 and the definitions are used to examine the flexibility

and efficiency of seru systems and explain why they can achieve both in volatile markets. Define

X ⊂ℜI+ as the set of initial capacity levels for a seru system. Lemma EC.2 proves that any initial

capacity level, x, of a seru system is an instance of Definition EC.1.

Lemma EC.2. Let X ⊂ℜI+ be the set of initial capacity levels of a seru system. Then X is a

lattice.

Effects of inputs on outputs in a seru system are now analyzed using the concept of submodular

function in Definition EC.2. Inputs are the initial capacities of two heterogeneous serus, xi and

xj, where i ̸= j. Using formula (EC.1), two outputs, capacity consumption qio(x,ω) of seru i and

profit R(xi, ω) of the seru system from seru i, are analyzed, to investigate flexibility and efficiency.

ec2 e-companion to Author et al.: Responsiveness and Efficiency of Seru Production Systems in Volatile Markets

EC.2. Algorithms

EC.2.1. Stochastic Gradient Algorithm (SGA)

Many algorithms for unconstrained optimization rely on gradient methods that are based on

approximating a function with a low-degree partial derivative (usually of degree one or two),

using Taylor’s expansion. Gradient algorithms have been used to solve operations management

problems (Mahajan and Van Ryzin 2001, Newton et al. 2018). Similar to them, a one-degree partial

derivative algorithm is used in this paper.

In the following SGA, t is the iteration-index inside the loop, zt is the initial capacity of the

seru system in the tth iteration of the algorithm, ωt is the sample path in the tth iteration, and

γt is the step size in the tth iteration.

Stochastic Gradient Algorithm

Step 1. Choose the initial capacity z0 ∈ℜI . Let t= 0.

Step 2. Given a sample path ωt, generate a gradient ∇E[R(zt, ωt)].
Step 3. Compute zt+1 = zt+ γt∇E[R(zt, ωt)].
Step 4. Let t= t+1 and go to Step 2.

There are three questions related to the stochastic gradient algorithm. The first is how to choose

the initial capacity z0 and the step size γt. z0 is a vector that can be simply set to zeros. γt is usually

defined as γt > 0,
∑∞

t=0 γt =∞, and
∑∞

t=0 γ
2
t <∞. Our algorithm follows this. The second is how

to calculate gradient ∇E[R(zt, ωt)]. Third, SG algorithm does not have a termination criterion.

What is the convergence of this algorithm? The latter two questions on gradients and convergence

are addressed next.

EC.2.1.1. Calculation of Gradients

Defining the gradient (or subgradient at nonsmooth points) is direct if ∇E[R(x,ω)] =E[∇R(x,ω)].
However, Olofsson and Andersson (2012) illustrated that if g is a function, most often g[E(X)] ̸=
E[g(X)]. Fortunately in Lemma EC.3, our expectation and derivative can be interchanged under

specific conditions.

Lemma EC.3. Let X be a random function. X(θ) is its value at θ, θ ∈ [a, b]. In interval [a, b],

if X is differentiable, and X is integrable, and X satisfies a Lipschitz condition with modulus

KX , E[KX] <∞, then the derivatives {E[X(θ)]
′
, θ ∈ [a, b]} exist and E[X ′

(θ)] = E[X(θ)]
′
for all

θ ∈ [a, b].

Lemmas EC.4, EC.5, and EC.6 show that R(x,ω) satisfies the three conditions in Lemma EC.3.

Lemma EC.4. For any order o∈O, xo is a Lipschitz function.

Lemma EC.5. For any order o∈O and any seru i∈ I, then

∥qio(x,ω)− qio(y,ω)∥ ≤ ∥(xio−xio+1)− (yio− yio+1)∥.

Lemma EC.6. For order o ∈ O, if its demand do has an absolutely continuous cumulative

distribution function, and do and O are bounded, then R(x,ω) satisfies the three conditions in

Lemma EC.3.

e-companion to Author et al.: Responsiveness and Efficiency of Seru Production Systems in Volatile Markets ec3

To calculate ∇R(x,ω), several gradients are introduced as follows. From Equation (4), the

gradient of the used capacity of seru i is obtained from order o. ∇qio(x,ω), 1≤ i≤ I and 1≤ o≤O.

∇qio(x,ω) is a column vector with I components.

∇qio(x,ω) =


∂
∂x1o

qio(x,ω)
...

∂
∂xIo

qio(x,ω)

 ,

where a component ∂
∂xlo

qio(x,ω), 1≤ l≤ I, is defined as follows.

If ri <λo+1, then

∂

∂xℓo
qio(x,ω) =


−Im̃<doτo≤m, if ri > rℓ;

Idoτo>m, if ri = rℓ;

0, if ri < rℓ.

(EC.2)

If ri = λo+1, then ∂
∂xℓo

qio(x,ω) = 0. Therefore, the gradient of capacity used for a seru system by

order o, ∇qo(x,ω), is an I × I matrix given as ∇qo(x,ω) = [∇q1o(x,ω), . . . ,∇qIo(x,ω)].

The SGA finds x that meets the equation E[∇R(x,ω)] = 0. ∇R(x,ω) is a vector with I com-

ponents. ∇R(x,ω) = [∇R(x1, ω), . . . ,∇R(xI , ω)] = h∇q(x,ω)− e, where ∇q(x,ω) is the capacity

gradient of the seru system on a sample path ω, h and e is the revenue and cost of using the seru

system. ∇q(x,ω) is calculated using a backward approach, which starts from the capacity gradi-

ent of the final order O, ∇qO(x,ω), to the capacity gradient of order 1, ∇q1(x,ω). The backward

procedure is as follows. I is the I × I identity matrix.

Backward Procedure to Calculate the Capacity Gradient

Step 1. Calculate the capacity gradient of the final order O using ∇qO(x,ω).

Step 2. o=O− 1.

Step 3. Calculate the capacity gradient of order o using ∇qo(x,ω) + [I − ∇qo(x,ω)] ×

∇qo+1(x,ω), o=O− 1, ...,1.

Step 4. o= o− 1. If o= 1, stop. Otherwise, go to Step 3.

Step 5. Calculate the capacity gradient on sample path ω using ∇q(x,ω) =∇q1(x,ω).

EC.2.1.2. Convergence of the Stochastic Gradient Algorithm

Convergence of the stochastic gradient algorithm is now proved. The following convergence The-

orem EC.1 is used in Theorem EC.2 to prove that the SG Algorithm converges.

Theorem EC.1. Consider a step of an algorithm rt+1 = rt+ γtst, where step sizes γt are non-

negative and satisfy
∑∞

t=0 γt =∞ and
∑∞

t=0 γ
2
t <∞. Under the following Assumption 1, the fol-

lowing three statements hold with probability 1.

(a) The sequence f(rt) converges.

(b) limt→∞∇f(rt) = 0.

(c) Every limit point of rt is a stationary point of f .

ec4 e-companion to Author et al.: Responsiveness and Efficiency of Seru Production Systems in Volatile Markets

Assumption 1. Function f :ℜn→ℜ has the following four properties.

(a) f(r)≥ 0 for all r ∈ℜn.

(b) (Lipschitz continuity of ∇f) Function f is continuously differentiable. There exists some con-

stant L such that

||∇f(r)−∇f(r̄)|| ≤L||r− r̄||,∀r, r̄ ∈ℜn.

(c) (Pseudogradient property) There exists a positive constant c such that

c||∇f(rt)||2 ≤−∇f(rt)′E[st|Ft],∀t,

where Ft = {r0, . . . , rt, s0, . . . , st−1, γ0, . . . , γt}. Ft contains the history of the algorithm until time t.

(d) There exist positive constants K1 and K2 such that

E[||st||2|Ft]≤K1 +K2||∇f(rt)||2,∀t.

Lemma EC.7 and Theorem EC.2 prove that the SG algorithm converges.

Lemma EC.7. If f and g are Lipschitz with modulus F and G, and a and b are scalars, then

af + bg is Lipschitz with modulus aF + bG.

Theorem EC.2. The Stochastic Gradient Algorithm converges to a stationary point.

Since the profit function is not quasiconcave, the SG Algorithm converges to a stationary point,

which may be the global optimum, maybe a suboptimal point, or maybe a saddle point.

EC.2.1.3. SGA, Non-Convex Optimaztion, and the Dynamic JIT-OS Problem

Non-convex optimization is a key topic in artificial intelligence research. Many machine learning

models, especially deep neural networks, rely on non-convex loss functions with multiple local

minima and saddle points. This complexity requires specialized optimization techniques. A recent

review (Fotopoulos et al. 2024) highlights the importance of non-convex optimization in modern

machine learning, as it helps reduce computational costs while improving model performance.

SGAs are widely used to optimize non-convex problems. Despite the challenges of non-convex

optimization, SGAs have shown strong empirical performance. A design for SGA is to escape

saddle points and converge to a local optimum. However, there is no guarantee that an SGA will

always reach a local optimum. Recent research (Fang et al. 2019, Katende and Kasumba 2024)

explores improving SGAs by using second-order methods, such as the Hessian matrix, to help

escape saddle points in smooth curve functions.

Next, we discuss the structure of our objective function R(x,ω), which is a piecewise-linear, high-

dimensional, non-quasiconcave function. Within each region of the decision space, the objective

function is purely linear and thus has a zero Hessian. Consequently, any Hessian-based method

for escaping saddle points mentioned above (Katende and Kasumba 2024) cannot be applied,

because those methods rely on nonzero second derivatives for identifying saddle neighborhoods.

In short, each “piece” of the objective function R(x,ω) is given by linear expressions of seru

e-companion to Author et al.: Responsiveness and Efficiency of Seru Production Systems in Volatile Markets ec5

capacities—once seru ranks and capacity allocation rules are fixed for an order, the associated

profit contribution is a linear function of the decision variables. Summing over orders and serus

preserves this piecewise-linear structure. However, R(x,ω) is not globally linear, because the rank

and capacity usage indicators produce kinks at region boundaries. A “kink” is a boundary where

one linear piece meets another, causing a jump or change in the slope of the function. These

kink points are nondifferentiable, meaning that standard gradients do not exist there—one should

instead use subgradients or other nonsmooth approaches. Also, having many linear pieces (one

per combination of seru ranks and capacity-threshold conditions) makes R(x,ω) behave like a

collection of multiple linear functions stitched together. This complicates the optimization, as an

algorithm can encounter many local maxima or plateau regions. Conventional smooth or Hessian-

based methods fail at the kinks, and subgradient or specialized nonsmooth algorithms are needed

to navigate the piecewise-linear R(x,ω).

We define the subgradients in Section EC.2.1.1 specifically to exploit the rank-based, piecewise-

linear structure of the JIT-OS problem. In each region (fixed seru ranks and capacity-usage inequal-

ities), the usage qio is a linear function of the decision variables. Subgradients are computed by

taking partial derivatives of these linear expressions with respect to the relevant capacities, care-

fully incorporating indicator-based conditions (such as m̃ < doτo ≤m). This piecewise approach

ensures that our SGA can move in a valid direction even at “kink” boundaries—where classical

gradients do not exist—and so find candidate solutions. However, this subgradient construction

is tailored to the JIT-OS environment: it hinges on the rank-priority and capacity-spillover logic

unique to seru assignments, so it may not extend to other piecewise-linear or nonsmooth problems.

Indeed, further research is needed to analyze theoretical convergence for this high-dimensional,

non-concave family of piecewise-linear programs, and to develop more general methods for navi-

gating large numbers of kinks and local optima.

While Theorem EC.2 establishes convergence of the SGA to a stationary point, we acknowl-

edge that such convergence—under mild conditions—is a well-established result in the non-convex

optimization literature. See Bottou et al. (2018) and Li and Lin (2023). Our objective here is

not to claim novelty in the convergence guarantee per se, but rather to demonstrate how stan-

dard gradient-based methods can be effectively applied to the dynamic, high-dimensional, non-

quasiconcave structure of the JIT-OS problem. In this sense, the SGA serves as a representa-

tive example of a broader class of gradient-based algorithms that are viable under our problem

setting. Moreover, due to the piecewise-linear and nonsmooth nature of our objective function

R(x,ω), we develop a tailored subgradient construction that respects the combinatorial struc-

ture of seru assignments, ensuring that directional updates remain valid even at nondifferentiable

kink points. While our implementation of SGA is specific to the JIT-OS model, we see value in

future work comparing its empirical performance to alternative nonsmooth optimization meth-

ods—particularly relative to the Newsvendor benchmark—under varying capacity scenarios and

structural constraints. (We thank a reviewer for raising these points.)

ec6 e-companion to Author et al.: Responsiveness and Efficiency of Seru Production Systems in Volatile Markets

EC.2.2. Assignment Algorithms

Three greedy algorithms, Profit Fulfillment Maximization Algorithm (PFM Algorithm), Skill

Waste Minimization Algorithm (SWM Algorithm), and Labor Cost Minimization Algorithm

(LCM Algorithm) are proposed to find and choose different optima. For example, if all skill

levels are covered or are enough, profit could have more importance. Being at capacity, skill level

may be the best way to improve profit. A high labor cost may have a big impact on profit.

PFM Algorithmmaximizes the profit fulfillment ratio. SWM Algorithmminimizes skill waste.

LCM Algorithm minimizes labor cost. Managers can choose which algorithm to use in different

scenarios. The LCM Algorithm has been given in Section 5, we give the other two algorithms

and Pseudocodes as follows.

In the PFM Algorithm, hi =
∑J

j=1 pjs
j
i , which is the maximum revenue that a seru can

provide by assembling a product that exactly matches its skill vector. This is the maximum revenue

that a seru can provide from assembling one product, when making full use of its skills. Define

ξio =
(
bo− ei

)
/
(
hi− ei

)
as the profit fulfillment ratio if order o is assigned to seru i, where hi− ei

is the maximum profit from seru i assembling one product and bo − ei is the profit that seru i

provides by assembling one product of order o.

Now these three greedy algorithms are given. Denote Uo as the remaining production require-

ments of order o that have not yet been satisfied, Wi as the remaining capacity of seru i, P (o,x)

as the profit obtained by assembling order o under initial capacity x, A(o,x) as the set of serus

with which order o is assembled, and ρio as the skill waste incurred by using seru i to assemble

order o, ρio =
∑J

j=1(s
j
i − vjo).

Profit Fulfillment Maximization Algorithm

Step 1. For new order o, form set Go whose elements are serus that can assemble order o.

Step 2. From Go, among all serus that have positive capacity, seru i has the highest profit

fulfillment ratio ξio. Assemble order o on seru i as much as possible. (If two or more

serus have the same profit fulfillment value, the seru with lowest labor cost assembles

order o.)

Step 3. Update the remaining production requirements that have not yet been satisfied for

order o (Uo), the available capacity of seru i (Wi), the profit P (o,x), and the current

solution set A(o,x).

Step 4. If the production period ends or there is no more seru capacity, STOP. Otherwise,

if the unsatisfied requirements of order o are 0, go to Step 1. Otherwise, go to Step

2.

Skill Waste Minimization Algorithm

Step 1. For new order o, form set Go whose elements are serus that can assemble order o.

Step 2. From Go, among all serus that have positive capacity, seru i has the lowest skill

waste ρio. Assemble order o on seru i as much as possible. (If two or more serus have

the same skill waste value, the seru with lowest labor cost assembles order o.)

e-companion to Author et al.: Responsiveness and Efficiency of Seru Production Systems in Volatile Markets ec7

Step 3. Update the remaining production requirements that have not yet been satisfied for

order o (Uo), the available capacity of seru i (Wi), the profit P (o,x), and the current

solution set A(o,x).

Step 4. If the production period ends or there is no more seru capacity, STOP. Otherwise,

if the unsatisfied requirements of order o are 0, go to Step 1. Otherwise, go to Step

2.

Algorithm 1 Profit Fulfillment Maximization (PFM) Algorithm

1: Sort the serus in nondecreasing order of labor cost:
Find a permutation π such that eπ(1) ≤ eπ(2) ≤ · · · ≤ eπ(I).

2: while a new order o arrives with demand do do
3: Initialize Uo← do and Wi← xio.
4: Determine the set Go, denote λo = |Go|.
5: for i∈ Go do
6: Calculate the value of profit fulfillment ξio = (bo− ei)/(hi− ei).
7: end for
8: Sort the serus in Go in nonincreasing order of ξio:

Find a permutation ϕ in Go so that ξϕ(1)o ≥ ξϕ(2)o ≥ · · · ≥ ξϕ(λo)o . When ξio = ξko , and ei ≤ ek,
let ϕ(i)≤ ϕ(k).

9: for i= 1 to λo do
10: if Wϕ(i) > 0 and Uo > 0 then
11: t←min{Uo,Wϕ(i)}.
12: Assemble t products of order o in seru ϕ(i). Update A(o,x).
13: Update: Uo←Uo− t, Wϕ(i)←Wϕ(i)− t, P (o,x) = P (o,x)+ tθϕ(i),o.
14: end if
15: end for
16: end while
17: Output: P (o,x) and the associated solution A(o,x).

Algorithm 2 Skill Waste Minimization (SWM) Algorithm

1: Sort the serus in nondecreasing order of labor cost:
Find a permutation π such that eπ(1) ≤ eπ(2) ≤ · · · ≤ eπ(I).

2: while a new order o arrives with demand do do
3: Initialize Uo← do and Wi← xio.
4: Determine the set Go, denote λo = |Go|.
5: for i∈ Go do
6: Calculate the value of skill waste ρio =

∑J

j=1(s
j
i − vjo).

7: end for
8: Sort the serus in Go in nondecreasing order of ρio:

Find a permutation ψ in Go so that ρψ(1)o ≤ ρψ(2)o ≤ · · · ≤ ρψ(λo)o . When ρio = ρko , and ei ≤ ek,
let ψ(i)≤ψ(k).

9: for i= 1 to λo do
10: if Wψ(i) > 0 and Uo > 0 then
11: t←min{Uo,Wψ(i)}.
12: Assemble t products of order o in seru ψ(i). Update A(o,x).
13: Update: Uo←Uo− t, Wψ(i)←Wψ(i)− t, P (o,x) = P (o,x)+ tθψ(i),o.
14: end if
15: end for
16: end while
17: Output: P (o,x) and the associated solution A(o,x).

EC.3. Proofs of Theorems

Theorem 1. A general static JIT-OS problem can be optimized in polynomial-time.

Proof of Theorem 1. If the customer orders are known at the beginning of the production

period, it is easy to see that in order to assemble all the customer orders and obtain a maximum

profit, the total capacity of the serus must be exactly equal to the total demand of the customer

orders. Therefore, we can transform the general static JIT-OS problem into the following minimum

cost flow problem (see Figure EC.1) where the customer orders are the supply nodes, the given

ec8 e-companion to Author et al.: Responsiveness and Efficiency of Seru Production Systems in Volatile Markets

Algorithm 3 Labor Cost Minimization (LCM) Algorithm

1: while a new order o arrives with demand do do
2: Initialize Uo← do and Wi← xio.
3: Determine the set Go, denote λo = |Go|.
4: for i∈ Go do
5: Sort the serus in Go in nondecreasing order of labor cost:

Find a sequence so that e[1] ≤ e[2] ≤ · · · ≤ e[λo].
6: end for
7: for i= 1 to λo do
8: if W[i] > 0 and Uo > 0 then
9: t←min{Uo,W[i]}.

10: Assemble t products of order o in seru [i]. Update A(o,x).
11: Update: Uo←Uo− t, W[i]←W[i]− t, P (o,x) = P (o,x)+ tθ[i],o.
12: end if
13: end for
14: end while
15: Output: P (o,x) and the associated solution A(o,x).

seru types are the transhipment nodes, and a dummy node t is introduced as the demand node.

An arc between customer order o and seru type i is created if αio = 1.

1

2

O-1

O

t

1

2

..
.

I

..
.

-d1

-d2

-dO−1

-dO

O∑
o=1

do

customer orders
seru types

Figure EC.1 The minimum cost flow used in the proof of Theorem 1.

We set the cost per-unit-flow between customer order o and seru type i to −θio, set the cost

per-unit-flow between seru types and the dummy sink t to 0, and set the capacity of each arc

in the graph to +∞. Then the optimal flow from customer orders to seru types in Figure EC.1

determines the assignment of customer orders, and the optimal flow from seru types to sink t

determine the optimal capacity of serus. Note that the above minimum cost flow problem can

be solved by any linear programming algorithm with an integral optimal solution, so the claim

follows. □

Theorem 2. For an arbitrary sample path ω, total capacity consumption
∑

o∈O q
i
o(x,ω) of seru

i is submodular and satisfies diminishing returns with respect to the initial capacity of an arbitrary

seru j (i ̸= j), xj on X.

Proof of Theorem 2. Using Lemmas EC.1, EC.2, and 1, we can get the result. □

Theorem 3. For an arbitrary sample path ω, profit R(xi, ω) from seru i satisfies diminishing

returns with respect to the initial capacity of another seru j (i ̸= j), xj on X.

Proof of Theorem 3. Using Theorem 2, we can get the result. □

e-companion to Author et al.: Responsiveness and Efficiency of Seru Production Systems in Volatile Markets ec9

Theorem 4. For an arbitrary sample path ω, profit of seru system R(xi, ω) from seru i, satisfies

strictly diminishing returns with respect to the initial capacity of an arbitrary seru j (i ̸= j), xj on

X, if for an arbitrary order o on ω, rj < ri ≤ λo and m≤ doτo ≤m+βj. That is, R(x−ij, x̂
i, x̂j, ω)−

R(x−ij, x
i, x̂j, ω)<R(x−ij, x̂

i, xj, ω)−R(x−ij, x
i, xj, ω).

Proof of Theorem 4. Using Lemma EC.8, we can get the result. □

Theorem 5 There exists a sample path ω on which the profit function R(x,ω) is not quasicon-

cave.

Proof of Theorem 5. To show that R(x,ω) is not quasiconcave, it suffices to show that there is

a sample path ω that makes the convex combination R(αx+βy,ω), with α,β ≥ 0 and α+β = 1, of

two initial seru capacities x, y to be smaller than both R(x,ω) and R(y,ω). That is R(αx+βy,ω)<

min{R(x,ω),R(y,ω)} (Lay 1982).

Consider an SPS with 4 serus. Let x= (8,2,0,1) and y= (0,8,2,1) be two different initial seru

capacities. Suppose that α = 0.9 and β = 0.1. Then αx+ βy = (7.2,2.6,0.2,1). Assume that the

cost to use seru i, ei = $100, i= 1,2,3, and 4, and the profit of order o, bo = $200, for o∈O.

Consider a sample path ω, with O = 3 orders as follows. Assume that order 1 can only be

produced by seru 4, order 2 by serus 1 and 3 in decreasing rank, and order 3 by serus 1 and 2 in

decreasing rank. Suppose that demands are d1 = 1, d2 = 2, and d3 = 8. Then R(x,ω) =R(y,ω) =

200× 11− 100× 11 =$1100 and R(αx+βy,ω) = 200× 10.8− 100× 11 =$1060. □

Theorem 6 Order assignment for the dynamic JIT-OS Problem is NP-hard.

Proof of Theorem 6. We show that the order assignment for the dynamic JIT-OS Problem is

NP-hard even when there is only one order with only one product of demand and only two serus

can assemble this order. The problem of finding a minimum vertex cover in an undirected graph

G= (V,E) is NP-hard (Garey and Johnson 1979). Given an integer parameter k, the vertex cover

problem is to find whether there exists a subset of vertices V ′ ⊂ V of cardinality at most k, such

that each edge e∈E is incident to some vertex in V ′. Given any instance A of the minimum vertex

cover problem, V = {v1, . . . , vI}. An instance A′ of the dynamic JIT-OS Problem is constructed

as follows. Let the number of serus be I = |V |, one seru corresponding to each vertex. Let w be

the order with only one unit of demand that requires one unit of capacity. The two serus that can

assemble this product are i and j, {(i, j) : (vi, vj) ∈E}, which occurs with probability 1/|E|. The

available capacity of the total number of serus is
∑I

i=1 x
i
1 = k units. This order can be assembled

if and only if there is a vertex cover with size k at most in instance A.

Suppose that there is a vertex cover V ′ ⊂ V such that |V ′| ≤ k. Consider a capacity x1 =

(x1
1, . . . , x

i
1, . . . , x

I
1), where x

i
1 = 1 unit if vi ∈ V ′ and xi1 = 0 otherwise. In other words, a single

capacity unit of seru i is stocked if and only if vi is a vertex of the vertex cover V ′. Clearly the

total number of capacity units stocked is at most
∑I

i=1 x
i
1 = k. Let

E[R(x1,w)] =
1

|E|
∑

(vi,vj)∈E

max{xi1, x
j
1}.

ec10 e-companion to Author et al.: Responsiveness and Efficiency of Seru Production Systems in Volatile Markets

Since V ′ is a vertex cover, for any edge (vi, vj) ∈ E, at least one of vi or vj is in V ′. Therefore,

max{xi1, x
j
1} = 1 for all (vi, vj) ∈ E and E[R(x1,w)] = 1, which means that an arbitrary order w

can be assembled.

Conversely, consider a capacity x1 = (x1
1, . . . , x

i
1, . . . , x

I
1) that contains at most k units and can

assemble order w. The following shows that V ′ = {vi : xi1 ≥ 1} is a vertex cover. This set consists

of at most k vertices. Because the order can be assembled,

E[R(x1,w)] =
1

|E|
∑

(vi,vj)∈E

min{max{xi1, x
j
1},1}= 1.

Thus, it follows that max{xi1, x
j
1} ≥ 1 for any edge (vi, vj) ∈ E, implying that at least one of the

vertices vi and vj belongs to V
′. In other words, the set V ′ is a vertex cover. □

Theorem 7 It is NP-hard to approximate order assignment for the dynamic JIT-OS Problem

within a factor better than 1− 1/e.

Proof of Theorem 7. We show that it is NP-hard to approximate order assignment for the

dynamic JIT-OS Problem within a factor better than 1− 1/e, even when there is only one order

with only one product of demand. We reduce any instance of the maximum coverage problem to

the dynamic JIT-OS Problem. The maximum coverage problem is described as follows: Given a

ground set G= {e1, e2, . . . , eI} and its power set P(G), a family set F ⊆P(G), and an integer k.

The maximum coverage problem is to find a subset g ⊆ G with k elements such that the cover

ĝ= |{f ∈F : f ∩ g ̸= ∅}| is maximized.

Consider a maximum coverage instance A. An instance A′ of the dynamic JIT-OS Problem is

as follows. Let the number of serus be I = |G|, one seru corresponding to each element in G. Let

w be the order with only one unit of demand that requires one unit of capacity. The serus that

can assemble this product construct a set f , which is an element of F with occurence probability

1/|F|. The available capacity of the total number of serus is
∑I

i=1 x
i
1 = k units.

Let g be an arbitrary subset of G, g⊆G and |g|= k, generating the maximum coverage instance

A′. Consider a capacity x1 = (x1
1, . . . , x

i
1, . . . , x

I
1), where x

i
1 = 1 unit if ei ∈ g and xi1 = 0 otherwise.

In other words, a single capacity unit of seru i is stocked if and only if ei is an element of g. So

the total number of capacity units stocked is at most
∑I

i=1 x
i
1 ≤ |g|= k.

To finish the proof, it is sufficient to show that x1 generates an expected revenue of ĝ/|F|. For
an arbitrary subset f ⊂G, let I(f,g)=1 if f ∩ g ̸= ∅ and I(f,g) = 0 otherwise. In other words, I(f,g) is
an indicator to judge whether f and g have a non-empty intersection.

E[R(x1,w)] =
∑
f∈F

[
1

|F|
× I(f,g)

]
=

ĝ

|F|
.

Given a capacity x1 = (x1
1, . . . , x

I
1) that has at most k non-zero units, construct a set g⊆G, |g| ≤ k,

such that ĝ=|F|×E[R(x1,w)]. To this end, let g= {ei : xi1 = 1}. Then, |g| ≤ k and

ĝ=
∑
f∈F

I(f,g) = |F|×E[R(x1,w)].

e-companion to Author et al.: Responsiveness and Efficiency of Seru Production Systems in Volatile Markets ec11

Finally, Feige (1998) has shown that it is NP-hard to approximate within a factor better than

1− 1/e for a maximum coverage problem, so our claim follows. □

Theorem 8 For any seru, the LCM algorithm has a competitive ratio of

mmin

mmax

× 1−mmax

1−mmin

. (EC.3)

Proof of Theorem 8. Consider ei as the labor cost associated with an arbitrary seru. In the

context of worst-case scenarios, the competitive ratio manifests as (bmin − ei)/(bmax − ei). Given

that mmax is defined as (bmax−ei)/bmax, it follows that bmax can be expressed as ei/(1−mmax). In a

parallel manner, bmin equates to ei/(1−mmin). By substituting these expressions into the formula

for the competitive ratio, we arrive at the desired conclusion. □

• Further Discussion on the Input-Dependent Competitive Ratio

The competitive ratio (CR) measures how well an online algorithm performs compared to an

ideal offline algorithm that knows all future information. For the single-price assortment revenue

management problem, Golrezaei et al. (2014) developed an online algorithm that achieves a CR

approaching 1−1/e in the asymptotic regime, assuming large inventories. Their algorithm carefully

manages inventory, penalizing items with lower remaining stock, to maximize expected revenue

even without knowledge of future customer arrivals.

However, when each item has multiple possible prices (i.e., multiple fare classes), Ma and Simchi-

Levi (2020) showed that it becomes impossible to achieve a universally fixed, nonzero CR for all

input parameters. This impossibility arises because without carefully chosen “booking limits” (i.e.,

rejecting certain customers), an online algorithm might sell too much inventory at low prices, miss-

ing later higher-price opportunities. In the worst-case case, Ma and Simchi-Levi (2020) illustrated

that the CR of Golrezaei et al. (2014) changes from input-independent 1−1/e to input-dependent

ratio
r(L)

r(H)
, where r(L) and r(H) are the lowest and highest prices of an item.

We show that our CR (
mmin

mmax

× 1−mmax

1−mmin

) is consistent with Ma and Simchi-Levi’s CR (
r(L)

r(H)
).

In assortment revenue management, an item is similar to a seru in a seru production system.

Like Golrezaei’s method, our LCM algorithm follows a First-Come-First-Serve policy without

booking limits. For any seru i, its lowest and highest revenues are bmin and bmax, respectively. Since

our objective function is profit, Ma and Simchi-Levi’s CR (
r(L)

r(H)
), should correspond to the ratio

of the lowest profit to the highest profit. This relationship has been proven in Theorem 8, leading

to the result CR=
mmin

mmax

× 1−mmax

1−mmin

.

For more theoretical analysis on input-dependent CRs, see Mehta (2013).

(We thank a reviewer for raising these points.)

Theorem EC.2 The Stochastic Gradient Algorithm converges to a stationary point.

Proof of Theorem EC.2. f(x) =E [R(x,ω)]. For condition (a), f(x) =E [R(x,ω)]≥ 0, which is

obviously true. For condition (b), from Lemma EC.6, it is sufficient to show that there exists a

constant L such that

E
[
||∇R(xi, ω)−∇R(yi, ω)||

]
≤L||x− y||.

ec12 e-companion to Author et al.: Responsiveness and Efficiency of Seru Production Systems in Volatile Markets

Note that R(xi, ω) =
∑

o∈O bo[q
i
o(x,ω)/τo]− eixi. From Lemma EC.7, it is sufficient to show that

there exists a constant L′ such that

E
[
||∇qio(x,ω)−∇qio(y,ω)||

]
≤L′||x− y||.

From Equation (EC.2), the partial derivatives of the capacity used function satisfy

∂

∂xℓo
qio(x,ω)∈

{0,1}, if i= ℓ;

{−1,0}, if i ̸= ℓ.

Because

P (∇qio(x,ω) ̸=∇qio(y,ω))≤
I∑
ℓ=1

P (
∂

∂xℓo
qio(x,ω) ̸=

∂

∂xℓo
qio(y,ω)), (EC.4)

we have

E
[
||∇qio(x,ω)−∇qio(y,ω)||

]
≤
√
I ×P (∇qio(x,ω) ̸=∇qio(y,ω)). (EC.5)

The right hand side of Equation (EC.4) is analyzed as the following three cases.

Case 1. ri > rℓ.

P (
∂

∂xℓo
qio(x,ω) ̸=

∂

∂xℓo
qio(y,ω))≤P (x[ri−1]

o + · · ·+x[1]
o <doτo)×P (y[ri−1]

o + · · ·+ y[1]o >doτo)

+P (x[ri]
o + · · ·+x[1]

o >doτo)×P (y[ri]o + · · ·+ y[1]o <doτo).

From Lemma EC.4,
∣∣∣∣xℓo− yℓo∣∣∣∣≤ ||xo− yo|| ≤M ||x− y||. For all ℓ= 1, . . . , I,∣∣∣∣∣
∣∣∣∣∣
ri∑
ℓ=1

(x[ℓ]
o − y[ℓ]o)

∣∣∣∣∣
∣∣∣∣∣≤

ri∑
ℓ=1

∣∣∣∣x[ℓ]
o − y[ℓ]o

∣∣∣∣≤Mri ||x− y|| .

Let Fo(·) denote the marginal distribution of demand do, o= 1, . . . ,O. It is clear that Fo(·) is a
Lipschitz function. That is, ||Fo(x)−Fo(y)|| ≤K ||x− y||. Therefore,

P (
∂

∂xℓo
qio(x,ω) ̸=

∂

∂xℓo
qio(y,ω))≤||Fo(x)−Fo(y)|| (

∣∣∣∣∣
∣∣∣∣∣
ri∑
ℓ=1

(x[ℓ]
o − y[ℓ]o)

∣∣∣∣∣
∣∣∣∣∣+
∣∣∣∣∣
∣∣∣∣∣
ri−1∑
ℓ=1

(x[ℓ]
o − y[ℓ]o)

∣∣∣∣∣
∣∣∣∣∣)

≤ 2KMri ||x− y|| ≤ 2KMI ||x− y|| .

Case 2. ri = rℓ.

P (
∂

∂xℓo
qio(x,ω) ̸=

∂

∂xℓo
qio(y,ω))≤ P (x[ri]

o +· · ·+x[1]
o >doτo)×P (y[ri]o +· · ·+y[1]o <doτo)≤KMI ||x− y|| .

Case 3. ri < rℓ.

P (
∂

∂xℓo
qio(x,ω) ̸=

∂

∂xℓo
qio(y,ω))≤ ||x− y|| .

From Equation (EC.5) and Cases 1, 2, and 3, let L′ =
√
I3(3KMI+1). This proves the Lipschitz

condition of ▽E [R(x,ω)].

e-companion to Author et al.: Responsiveness and Efficiency of Seru Production Systems in Volatile Markets ec13

For condition (c), fix c= 1. Note that E [▽R(rt, ωt)|Ft] = E [▽R(rt, ωt)]. The result is obtained

from Lemma EC.6.

For condition (d), it is sufficient to show that there exist two positive constants K1 and K2 such

that

||∇R(rt, ωt)||2 =

∣∣∣∣∣
∣∣∣∣∣∑
i∈I

∑
o∈O

[bo/τo]∇qio(rt, ωt)−
∑
i∈I

ei∇xi
∣∣∣∣∣
∣∣∣∣∣
2

≤K1 +K2||∇R(rt, ωt)||2.

For all t= 0,1,2, · · · , since min{ ∂
∂xio

qio(rt, ωt)}= 0 and min{ ∂
∂xℓo

qio(rt, ωt)}=−1, for i ̸= ℓ, let

K1 =

(∣∣∣∣∣
∣∣∣∣∣−
(∑
o∈O

bo/τo

)
1−

∑
i∈I

ei

∣∣∣∣∣
∣∣∣∣∣
)2

and K2 be an arbitrarily small and positive number. Then condition (d) holds. □

The proof of Theorem EC.1 can be found in Bertsekas and Tsistiklis (1996).

EC.4. Proofs of Lemmas

Lemma 1 For order o assembled on an arbitrary sample path ω, capacity consumption qio(x,ω)

of seru i is submodular and satisfies diminishing returns with respect to the initial capacity of

another seru j (i ̸= j), xj on X.

Proof of Lemma 1. Let ω be an arbitrary sample path. Let (x−ij, x̂
i, x̂j) be the vector obtained

from vector x by replacing components i and j with x̂i and x̂j, respectively. Suppose that x̂i ≥ xi

and x̂j ≥ xj, i ̸= j. Denote q̂io(γ, δ) = qio(x−ij, x
i + γ,xj + δ,ω), where γ, δ ≥ 0. Define βi = x̂i − xi

and βj = x̂j −xj.
The problem defined by q̂io(0, δ) is examined. A parametric analysis on δ is performed to find

the relationship between q̂io(0,0) and q̂
i
o(0, βj). From Equation (4), q̂io(0,0) = qio(x,ω) and q̂

i
o(0, βj)

are defined as follows.

q̂io(0, βj) =

Im̃+βj≤doτo<m+βj (doτo− m̃−βj)+ Im+βj≤doτox
i
o, rj < ri ≤ λo;

q̂io(0,0), otherwise.
(EC.6)

From Equation (EC.6), q̂io(0,0) and q̂
i
o(0, βj) are different only when rj < ri ≤ λo. This difference,

defined as ∆q̂io(0,∆δ) = q̂io(0, βj)− q̂io(0,0), is calculated by comparing βj with x
i
o in the following

three cases.

Case 1.1 βj <x
i
o.

∆q̂io(0,∆δ) = [Im̃+βj≤doτo<m+βj (doτo− m̃−βj)+ Im+βj≤doτox
i
o]− [Im̃≤doτo<m (doτo− m̃)+ Im≤doτox

i
o]

= Im̃≤doτo<m̃+βj (m̃− doτo)+ Im̃+βj≤doτo<m(−βj)+ Im≤doτo<m+βj (doτo− m̃−βj −x
i
o).

(EC.7)

Case 1.2 βj = xio.

∆q̂io(0,∆δ) = Im̃≤doτo<m(m̃− doτo)+ Im≤doτo<m+βj (doτo− m̃−βj −x
i
o). (EC.8)

ec14 e-companion to Author et al.: Responsiveness and Efficiency of Seru Production Systems in Volatile Markets

Case 1.3 βj >x
i
o.

∆q̂io(0,∆δ) = Im̃≤doτo<m(m̃− doτo)+ Im≤doτo<m̃+βj (−x
i
o)

+ Im̃+βj≤doτo<m+βj (doτo− m̃−βj −x
i
o). (EC.9)

Next the problem defined by ∆q̂io(γ,∆δ) = q̂io(γ,βj)− q̂io(γ,0) is studied. A parametric analysis

on γ is performed to investigate the monotonicity of ∆q̂io(γ,∆δ). There are three cases.

Case 2.1 ri = λo+1.

For all γ and δ, q̂io(γ, δ) = 0. Therefore, ∆q̂io(γ,∆δ) = 0, for all γ. In other words, ∆q̂io(γ,∆δ) is

monotonically nonincreasing in γ.

Case 2.2 ri < rj.

According to Equation (2), ri < rj implies that 1 ≤ ri ≤ λo. By Lemma EC.9, increasing γ is

equal to increasing xio. From Equation (4),

q̂io(γ, ·) =

Idoτo<xio+γdoτo+ Idoτo≥xio+γ(x
i
o+ γ), ri = 1;

Im̃≤doτo<m+γ(doτo− m̃)+ Idoτo≥m+γ(x
i
o+ γ), 1< ri ≤ λo.

(EC.10)

From Equation (EC.10), δ has no effect on ∆q̂io(γ,∆δ), which means that for each γ, q̂io(γ, ·) =
q̂io(γ, δ1) = q̂io(γ, δ2), for any arbitrary δ1, δ2. So ∆q̂io(γ, ·) =∆q̂io(γ,∆δ) = 0.

By Equation (EC.6), q̂io(0, ·) = q̂io(0,0) = qio(x,ω). So ∆q̂io(0, ·) = ∆q̂io(0,∆δ) = 0. Therefore,

∆q̂io(γ,∆δ) is monotonically nonincreasing in γ.

Case 2.3 rj < ri <λo+1.

Since xio can be expressed as a monotonically increasing function of γ, Equations (EC.7), (EC.8),

and (EC.9) are clearly monotonically decreasing in γ.

From Cases 2.1, 2.2, and 2.3, ∆q̂io(γ,∆δ) is a monotonically nonincreasing function of γ. This

means that ∆q̂io(βi,∆δ)≤∆q̂io(0,∆δ) or q̂
i
o(βi, βj)− q̂io(βi,0)≤ q̂io(0, βj)− q̂io(0,0) or

qio(x−ij, x̂
i, x̂j, ω)− qio(x−ij, x̂

i, xj, ω)≤ qio(x−ij, x
i, x̂j, ω)− qio(x−ij, x

i, xj, ω). (EC.11)

Equation (EC.11) can also be written as follows.

qio(x−ij, x̂
i, x̂j, ω)− qio(x−ij, x

i, x̂j, ω)≤ qio(x−ij, x̂
i, xj, ω)− qio(x−ij, x

i, xj, ω). (EC.12)

Because ω is an arbitrary sample path, i and j are arbitrary elements, o is an arbitrary order,

Equations (EC.11) and (EC.12) show that qio(x,ω) is submodular and satisfies diminishing returns

with respect to x1, . . . , xI on X. □

Lemma 2 Assume that for all orders, the highest and lowest profit margins are mmax = .6 and

mmin = .2. Then the worst-case competitive ratio for the LCM Algorithm is 1/6. Also, there exists

an instance of the online order-assignment problem for which the LCM Algorithm achieves exactly

this 1/6 ratio relative to an optimal offline solution. Hence, the worst-case competitive ratio of 1/6

is tight.

e-companion to Author et al.: Responsiveness and Efficiency of Seru Production Systems in Volatile Markets ec15

Proof of Lemma 2. To prove that a competitive ratio (CR) is tight, we need do two things:

(1). Upper Bound (Universal Guarantee): Show that for every valid input scenario σ, the LCM

Algorithm’s profit is at least CR times the offline optimal profit:

ProfitLCM(σ)≥CR×ProfitOPT(σ),

where ProfitLCM(σ) and ProfitOPT(σ) are profits generated by the algorithms of LCM and offline,

for instance σ, respectively.

(2). Lower Bound (Existence of a Worst-Case Instance): Construct (or identify) a specific input

ω such that LCM’s profit on ω is exactly CR times (or arbitrarily close to CR times) the profit

of an offline optimal solution:

ProfitLCM(ω) =CR×ProfitOPT(ω).

When both (1) and (2) hold, we conclude that the worst-case ratio is at least CR (because we

have an example that hits CR) and at most CR (because no instance can do worse than CR).

Hence the ratio is exactly CR, so CR is tight.

We now apply this structure to prove Lemma 2, which states that undermmax = .6 andmmin = .2,

the competitive ratio is 1/6 and there is an input instance that attains 1/6.

We break the proof into two steps. (1). Upper Bound: Show that under these margins (and cor-

responding costs/revenues), no input can produce a ratio below 1/6. (2). Lower Bound (Example):

Construct one input scenario on which LCM’s ratio is exactly 1/6.

Part A: The Universal Upper-Bound Argument

A detailed proof of the general formula CR =
mmin

mmax

× 1−mmax

1−mmin

is given by Theorem 8.

1. LCM always chooses the lowest-cost seru for the next production.

2. Margins mo (for an order o) are defined by (bo− ei)/bo, where bo is the order’s revenue, and

ei is the production cost using seru i.

3. By analyzing how LCM allocates orders vs. how an optimal offline algorithm can reorder or

reallocate (knowing future orders in advance), one can show the following.

ProfitLCM(σ) ≥ CR × ProfitOPT (σ) for all input sequences σ,

where CR =
mmin

mmax

× 1−mmax

1−mmin

. By substituting mmax = .6 and mmin = .2 into the CR formula,

we get that

CR =
.2

.6
× 1− .6

1− .2
=

1

3
× .4

.8
=

1

3
× 1

2
=

1

6
.

Thus, under the given margins, LCM guarantees that

ProfitLCM(σ) ≥ 1

6
× ProfitOPT (σ) for any valid instance σ.

This completes the universal upper-bound proof: no scenario can make LCM fall below the ratio

of 1/6.

ec16 e-companion to Author et al.: Responsiveness and Efficiency of Seru Production Systems in Volatile Markets

Part B: Constructing an “Adversarial Instance” (Lower Bound)

Consider the following instance ω.

• Seru: There is one seru i with two production skills. The cost of each skill is $40, so the

total production cost for any order assigned to the seru is $80 (since the production cost applies

to all skills regardless of usage). The seru is designed to assemble exactly one order, meaning its

capacity is sufficient to fully satisfy one order. Each order requires the seru’s entire capacity to be

completely assembled.

• Order 1: Requires only the first skill, with order price (revenue) = $100, production cost

= $80, profit = revenue - cost = 100− 80 = $20, and profit margin = 20
100

= .2, which matches

mmin = .2.

• Order 2: Requires both skills, with order price (revenue) = $200, production cost = $80, profit

= revenue - cost = 200− 80 = $120, and profit margin = 120
200

= .6, which matches mmax = .6.

• Order Arrival Sequence: Order 1 arrives first, followed by Order 2.

The LCM Algorithm processes orders online as follows. When order 1 arrives, the set G1 is

formed, the serus that can assemble order 1. Since the seru has both skills and order 1 requires

only the first skill, G1 = {i} (the single seru). Among serus in G1 with positive capacity, select the

seru with the lowest labor cost. The only seru has Wi = 1> 0, and its labor cost is $80. Assign

order 1 to seru i as much as possible. Suppose order 1 needs 1 seru, and Wi = 1 (i.e., seru i can

assemble only this order, using all of its capacity). Order 1 is fully assigned to seru i. Update:

• U1 = 0 (order 1 is fully satisfied).

• Wi = 1− 1 = 0 (capacity is fully used).

• P (1, x) = $20 (profit from order 1).

• A(1, x) = {i} (order 1 is assigned to seru i).

Unsatisfied requirements of order 1 are 0, so proceed to the next order. When order 2 arrives,

G2 is formed. Seru i has both skills, and order 2 requires both, so G2 = {i}. We check serus with

positive capacity. The seru’s capacity is Wi = 0, so no serus have positive capacity. Thus, order 2

cannot be assigned. No updates occur since no assignment is made. No capacity remains, so the

algorithm stops.

Total Profit=ProfitLCM(ω) = $20.

Since the LCM Algorithm is online, it assigns order 1 without knowledge of order 2, exhausting

the seru’s capacity and leaving no room for the more profitable order 2.

The optimal offline algorithm knows both orders in advance and can choose the best assignment

given the capacity constraint:

• Assign order 2: Profit = $120.

• Order 1 is not assigned.

Since the seru can process only one order, the optimal choice is order 2, yielding ProfitOPT (ω) =

$120.

e-companion to Author et al.: Responsiveness and Efficiency of Seru Production Systems in Volatile Markets ec17

Therefore, for this instance ω, ProfitLCM(ω) = $20, and ProfitOPT (ω) = $120.

ProfitLCM(ω)

ProfitOPT (ω)
=

20

120
=

1

6
.

This exactly matches the ratio claimed by the upper bound. So in this worst-case instance, LCM’s

performance is precisely 1/6 times that of OPT. This completes the proof of Lemma 2. □

Lemma EC.1 If both functions f and g satisfy diminishing returns on X, then function f + g

satisfies diminishing returns on X.

Proof of Lemma EC.1. Function f and g satisfy diminishing returns on X, we have

f(z−ij, ẑ
i, ẑj)− f(z−ij, ẑi, zj)≤ f(z−ij, zi, ẑj)− f(z−ij, zi, zj). (EC.13)

g(z−ij, ẑ
i, ẑj)− g(z−ij, ẑi, zj)≤ g(z−ij, zi, ẑj)− g(z−ij, zi, zj). (EC.14)

The result of above (EC.13) + (EC.14) is as follows.

[f(z−ij, ẑ
i, ẑj)+ g(z−ij, ẑ

i, ẑj)]− [f(z−ij, ẑ
i, zj)+ g(z−ij, ẑ

i, zj)]

≤ [f(z−ij, z
i, ẑj)+ g(z−ij, z

i, ẑj)]− [f(z−ij, z
i, zj)+ g(z−ij, z

i, zj)],

which is the result wanted. □

Lemma EC.2 Let X ⊂ ℜI+ be the set of initial capacity levels of a seru system. Then X is a

lattice.

Proof of Lemma EC.2. Suppose that x and y are two arbitrary elements of X, i.e., x∈X and

y ∈X, and x ̸= y. Obviously, x∧ y and x∨ y in X. □

Lemma EC.4 For any order o∈O, xo is a Lipschitz function.

Proof of Lemma EC.4. From Equation (3), it is sufficient to show that ∥xo+1−yo+1∥ ≤M∥xo−

yo∥, where M is a positive constant number. Because the square root is a subadditive function,

∥xo − yo∥ ≤
∑

i∈I ∥xio − yio∥, it is sufficient to show that ∥xio+1 − yio+1∥ ≤M∥xo − yo∥, or more

precisely, ∥xio+1− yio+1∥ ≤M∥xio− yio∥, for i∈ I. Show that ∥xio+1− yio+1∥ ≤M∥xio− yio∥ is true for

ri = 1,2, . . . , λo, λo+1. There are three cases.

Case 1. ri = 1.

∥xio+1− yio+1∥= ∥(xio−max{ao, doτo})+− (yio−max{ao, doτo})+∥.

Case 1.1 xio ≥max{ao, doτo} and yio ≥max{ao, doτo}.

∥xio+1− yio+1∥= ∥xio−max{ao, doτo}− yio+max{ao, doτo}∥= ∥xio− yio∥.

ec18 e-companion to Author et al.: Responsiveness and Efficiency of Seru Production Systems in Volatile Markets

Case 1.2 xio <max{ao, doτo} and yio ≥max{ao, doτo}.

∥xio+1− yio+1∥= ∥0− yio+max{ao, doτo}∥< ∥xio− yio∥.

Case 1.3 xio ≥max{ao, doτo} and yio <max{ao, doτo}.

∥xio+1− yio+1∥= ∥xio−max{ao, doτo}− 0∥< ∥xio− yio∥.

Case 1.4 xio <max{ao, doτo} and yio <max{ao, doτo}.

∥xio+1− yio+1∥= ∥0− 0∥ ≤ ∥xio− yio∥.

Case 2. 1< ri ≤ λo.

∥xio+1− yio+1∥ = ∥Idoτo<m̃(xio− ao)+ + Im̃≤doτo<m
(
xio−max{doτo− m̃, ao}

)+
− Idoτo<m̃′(yio− ao)+− Im̃′≤doτo<m′

(
yio−max{doτo− m̃′, ao}

)+ ∥,
where y[1]o + y[2]o + · · ·+ y[ri−1]

o = m̃′, and y[1]o + y[2]o + · · ·+ y[ri]o =m′. Because m̃≥ m̃′ and m≥m′,

m̃ needs to be compared with m′.

(1) If m′ ≤ m̃, then

∥xio+1− yio+1∥= ∥Idoτo<m̃′
[
(xio− ao)+− (yio− ao)+

]
+ Im̃′≤doτo<m′

[
(xio− ao)+− (yio−max{doτo− m̃′, ao})+

]
+ Im′≤doτo<m̃

(
xio− ao

)+
+ Im̃≤doτo<m(x

i
o−max{doτo− m̃, ao})+∥.

For intervals doτo ≤ m̃′, m̃′ <doτo ≤m′, m′ <doτo ≤ m̃, and m̃ < doτo ≤m, positive constants C1,

C2, C3, and C4 can be found for each interval, respectively, to make ∥xio+1− yio+1∥ ≤Ck∥xio− yio∥,

k= 1, ...,4.

(2) If m′ > m̃, then

∥xio+1− yio+1∥= ∥Idoτo<m̃′
[
(xio− ao)+− (yio− ao)+

]
+ Im̃′≤doτo<m̃

[
(xio− ao)+− (yio−max{doτo− m̃′, ao})+

]
+ Im̃≤doτo<m′ [(xio−max{doτo− m̃, ao})+− (yio−max{doτo− m̃′, ao})+]

+ Im′≤doτo<m(x
i
o−max{doτo− m̃, ao})+∥.

For intervals doτo ≤ m̃′, m̃′ <doτo ≤ m̃, m̃ < doτo ≤m′, and m′ <doτo ≤m, positive constants C5,

C6, C7, and C8 can be found for each interval, respectively, to make ∥xio+1− yio+1∥ ≤Ck∥xio− yio∥,

k= 5, ...,8.

Case 3. ri = λo+1.

∥xio+1− yio+1∥= ∥(xio− ao)+− (yio− ao)+∥ ≤ ∥xio− yio∥.

e-companion to Author et al.: Responsiveness and Efficiency of Seru Production Systems in Volatile Markets ec19

Therefore, always let M =max{Ck,1}, so that ∥xo+1− yo+1∥ ≤M∥xo− yo∥. □

Lemma EC.5 For any order o∈O and any seru i∈ I, then

∥qio(x,ω)− qio(y,ω)∥ ≤ ∥(xio−xio+1)− (yio− yio+1)∥.

Proof of Lemma EC.5. To clarify, Equation (3) is rewritten as follows.

xio+1 =



Iao≤doτo≤xio(x
i
o− doτo)+ Idoτo≤ao≤xio(x

i
o− ao)+ Iotherwise0, ri = 1;

I(doτo<m̃)&(ao≤xio)(x
i
o− ao)+ I(m̃≤doτo<m)&(ao<doτo−m̃)(x

i
o− (doτo− m̃))

+ I(m̃≤doτo<m)&(doτo−m̃≤ao≤xio)(x
i
o− ao)+ Iotherwise0, 1< ri ≤ λo;

Iao≤xio(x
i
o− ao)+ Iao>xio0, ri = λo+1.

Then xio−xio+1 is as follows.

xio−xio+1 =



Iao≤doτo≤xiodoτo+ Idoτo≤ao≤xioao+ Iotherwisex
i
o, ri = 1;

I(doτo<m̃)&(ao≤xio)ao+ I(m̃≤doτo<m)&(ao<doτo−m̃)(doτo− m̃)

+ I(m̃≤doτo<m)&(doτo−m̃≤ao≤xio)ao+ Iotherwisex
i
o, 1< ri ≤ λo;

Iao≤xioao+ Iao>xiox
i
o, ri = λo+1.

From Equation (4), qio(x,ω)− qio(y,ω) is as follows.

qio(x,ω)− qio(y,ω) =



Idoτo<xiodoτo+ Idoτo≥xiox
i
o− Idoτo<yiodoτo− Idoτo≥yioy

i
o, ri = 1;

Idoτo<m̃0+ Im̃≤doτo<m (doτo− m̃)+ Idoτo≥mxio

− Idoτo<m̃′0− Im̃′≤doτo<m′ (doτo− m̃′)− Idoτo≥m′yio, 1< ri ≤ λo;

0, ri = λo+1.

where y[1]o + y[2]o + · · · + y[ri−1]
o = m̃′, and y[1]o + y[2]o + · · · + y[ri]o = m′. Without loss of generality,

assume that xio ≥ yio. From Lemma EC.9, xio+1 ≥ yio+1. There are three cases.

Case 1 : ri = 1.

∥qio(x,ω)− qio(y,ω)∥= ∥Idoτo<xiodoτo+ Idoτo≥xiox
i
o− Idoτo<yiodoτo− Idoτo≥yioy

i
o∥

= ∥Idoτo<yio(doτo− doτo)+ Iyio≤doτo<xio(doτo− y
i
o)+ Idoτo≥xio(x

i
o− yio)∥.

∥(xio−xio+1)− (yio− yio+1)∥= ∥Iao≤doτo≤xiodoτo+ Idoτo≤ao≤xioao+ Iotherwisex
i
o

− Iao≤doτo≤yiodoτo− Idoτo≤ao≤yioao− Iotherwisey
i
o∥

= ∥Iao≤doτo≤yio(doτo− doτo)+ Idoτo≤ao≤yio(ao− ao)+ Iyio≤doτo≤xio(doτo− y
i
o)

+ Iyio≤ao≤xio(ao− y
i
o)+ Iotherwise(x

i
o− yio)∥.

ec20 e-companion to Author et al.: Responsiveness and Efficiency of Seru Production Systems in Volatile Markets

For each interval, ∥qio(x,ω)− qio(y,ω)∥ ≤ ∥(xio−xio+1)− (yio− yio+1)∥.
Case 2 : 1< ri ≤ λo.

Because m̃≥ m̃′ and m≥m′, m̃ needs to be compared with m′.

(1) If m′ ≤ m̃, then

∥qio(x,ω)− qio(y,ω)∥= ∥Idoτo<m̃′0+ Im̃′≤doτo<m′ (m̃′− doτo)+ Im′≤doτo<m̃(−yio)

+ Im̃≤doτo<m(doτo− m̃− yio)+ Idoτo≥m
(
xio− yio

)
∥.

∥(xio−xio+1)− (yio− yio+1)∥= ∥I(doτo<m̃)&(ao≤xio)ao+ I(m̃≤doτo<m)&(ao<doτo−m̃)(doτo− m̃)

+ I(m̃≤doτo<m)&(doτo−m̃≤ao≤xio)ao+ Iotherwisex
i
o

− I(doτo<m̃′)&(ao≤yio)ao− I(m̃′≤doτo<m′)&(ao<doτo−m̃′)(doτo− m̃′)

− I(m̃′≤doτo<m′)&(doτo−m̃′≤ao≤yio)ao− Iotherwisey
i
o∥

= ∥I(doτo<m̃′)&(ao≤yio)(ao− ao)+ I(doτo<m̃′)&(yio<ao≤xio)(ao− y
i
o)

+ I(m̃′≤doτo<m′)&(ao<doτo−m̃′)[ao− (doτo− m̃′)]

+ I(m̃′≤doτo<m′)&(doτo−m̃′<ao<yio)
(ao− ao)

+ I(m′<doτo<m̃)&(ao≤xio)(ao− y
i
o)+ I(m̃≤doτo<m)&(ao≤doτo−m̃)(doτo− m̃− yio)

+ I(m̃≤doτo<m)&(doτo−m̃≤ao≤xio)(ao− y
i
o)+ Iotherwise(x

i
o− yio)∥.

For each interval of doτo ≤ m̃′, m̃′ < doτo ≤m′, m′ < doτo ≤ m̃, m̃ < doτo ≤m, and m < doτo,

∥qio(x,ω)− qio(y,ω)∥ ≤ ∥(xio−xio+1)− (yio− yio+1)∥.
(2) If m′ > m̃, then

∥qio(x,ω)− qio(y,ω)∥= ∥Idoτo<m̃′0+ Im̃′≤doτo<m̃ (m̃′− doτo)+ Im̃≤doτo<m′(doτo− m̃− doτo+ m̃′)

+ Im′≤doτo<m(doτo− m̃− yio)+ Idoτo≥m
(
xio− yio

)
∥.

∥(xio−xio+1)− (yio− yio+1)∥= ∥I(doτo<m̃)&(ao≤xio)ao+ I(m̃≤doτo<m)&(ao<doτo−m̃)(doτo− m̃)

+ I(m̃≤doτo<m)&(doτo−m̃≤ao≤xio)ao+ Iotherwisex
i
o

− I(doτo<m̃′)&(ao≤yio)ao− I(m̃′≤doτo<m′)&(ao<doτo−m̃′)(doτo− m̃′)

− I(m̃′≤doτo<m′)&(doτo−m̃′≤ao≤yio)ao− Iotherwisey
i
o∥

= ∥I(doτo<m̃′)&(ao≤yio)(ao− ao)+ I(doτo<m̃′)&(yio<ao≤xio)(ao− y
i
o)

+ I(m̃′≤doτo<m̃)&(ao<d−m̃′)[ao− (doτo− m̃′)]

+ I(m̃′≤doτo<m̃)&(doτo−m̃′<ao<yio)
(ao− ao)

+ I(m̃≤doτo<m′)&(ao<doτo−m̃)(doτo− m̃− doτo+ m̃′)

+ I(m̃≤doτo<m′)&(doτo−m̃′≤ao<yio)(ao− ao)

+ I(m̃≤doτo<m′)&(doτo−m̃≤yio≤ao<xio)(ao− y
i
o)+ Iotherwise(x

i
o− yio)∥.

e-companion to Author et al.: Responsiveness and Efficiency of Seru Production Systems in Volatile Markets ec21

For each interval of doτo ≤ m̃′, m̃′ < doτo ≤ m̃, m̃ < doτo ≤m′, m′ < doτo ≤m, and m < doτo,

∥qio(x,ω)− qio(y,ω)∥ ≤ ∥(xio−xio+1)− (yio− yio+1)∥.

Case 3 : ri = λo+1.

∥qio(x,ω)− qio(y,ω)∥= 0.

∥(xio−xio+1)− (yio− yio+1)∥= ∥Iao≤xioao+ Iao>xiox
i
o− Iao≤yioao− Iao>yioy

i
o∥

= ∥Iao≤yio(ao− ao)+ Iyio<ao≤xio(ao− y
i
o)− Iao>xio(x

i
o− yio)∥ ≥ 0.

From Cases 1, 2, and 3, it is concluded that

∥qio(x,ω)− qio(y,ω)∥ ≤ ∥(xio−xio+1)− (yio− yio+1)∥. □

Lemma EC.6 For order o ∈ O, if its demand do has an absolutely continuous cumulative dis-

tribution function, and do and O are bounded, then R(x,ω) satisfies the three conditions in

Lemma EC.3.

Proof of Lemma EC.6. 1. Differentiability. From Equation (1), it is sufficient to show that

qio(x,ω) is differentiable. Because do has an absolutely continuous cumulative distribution function,

do is differentiable for every o∈O. So from Equation (4), qio(x,ω) is differentiable for all o∈O and

i∈ I.

2. Integrability. It is sufficient to show that R(x,ω) is an admissible function because every

admissible function is integrable (Edwards 1973). An admissible function is one that (a) is bounded;

(b) has bounded support; (c) is continuous except on a negligible set. R(x,ω) satisfies these three

admissible conditions as follows. (a) R(x,ω) is clearly bounded since do and O are bounded; (b)

the bounded support of R(x,ω) is [1,O]; (c) since R(x,ω) is differentiable, it is continuous.

3. Lipschitz condition with modulus KX . It is sufficient to show that there exists a constant real

number KR, such that ∥R(x,ω)−R(y,ω) ∥≤KR ∥ x− y ∥. Apply Lemma (EC.5) in the following

process.

∥R(x,ω)−R(y,ω)∥=

∣∣∣∣∣
∣∣∣∣∣∑
i∈I

∑
o∈O

bo/τo[q
i
o(x,ω)− qio(y,ω)]−

∑
i∈I

ei[x
i− yi]

∣∣∣∣∣
∣∣∣∣∣

≤

∣∣∣∣∣
∣∣∣∣∣∑
i∈I

∑
o∈O

bo/τo[(x
i
o− yio)− (xio+1− yio+1)]−

∑
i∈I

ei[x
i
1− yi1]

∣∣∣∣∣
∣∣∣∣∣

≤

∣∣∣∣∣
∣∣∣∣∣∑
i∈I

∑
o∈O

bo/τo[x
i
o− yio]

∣∣∣∣∣
∣∣∣∣∣+
∣∣∣∣∣
∣∣∣∣∣∑
i∈I

∑
o∈O

bo/τo[x
i
o+1− yio+1]

∣∣∣∣∣
∣∣∣∣∣+
∣∣∣∣∣
∣∣∣∣∣∑
i∈I

ei[x
i
1− yi1]

∣∣∣∣∣
∣∣∣∣∣

≤
∑
i∈I

∑
o∈O

bo/τo(∥ xio− yio ∥+ ∥ xio+1− yio+1 ∥)+
∑
i∈I

ei ∥ xi1− yi1 ∥

≤
∑
o∈O

bo/τo(∥xo− yo∥+ ∥xo+1− yo+1∥)+ ei∥x1− y1∥.

ec22 e-companion to Author et al.: Responsiveness and Efficiency of Seru Production Systems in Volatile Markets

By Lemma EC.4, two positive constant numbers C1 and C2 can be found, such that ∥xo− yo∥ ≤
C1∥x1− y1∥ and ∥xo+1− yo+1∥ ≤C2∥x1− y1∥. Therefore, ∥R(x,ω)−R(y,ω)∥ ≤KR∥x− y∥, where
KR =

∑
o∈O[bo/τo]C1 +

∑
o∈O[bo/τo]C2 + ei. □

Lemma EC.7 If f and g are Lipschitz with modulus F and G, and a and b are scalars, then

af + bg is Lipschitz with modulus aF + bG.

Proof of Lemma EC.7.

||(af(x)+ bg(x))− (af(y)+ bg(y))|| ≤ a ||f(x)− f(y)||+ b ||g(x)− g(y)||

≤ (aF + bG) ||x− y|| . □

Proofs of theorems and lemmas are facilitated using Lemma EC.8 and Lemma EC.9.

Lemma EC.8, which is a refinement of Lemma 1, demonstrates the strict diminishing returns

property of the capacity consumption function qio(x,ω). Two feasible initial capacities, x̂j and xj,

are defined for seru j, where x̂j ≥ xj and i ̸= j. The difference between the two capacities is denoted

by βj = x̂j −xj.

Lemma EC.8. For an order o assembled on an arbitrary sample path ω, capacity consump-

tion qio(x,ω) of seru i satisfies strictly diminishing returns with respect to the initial capacity of

an arbitrary seru j (i ̸= j), xj on X, if ranks rj < ri ≤ λo and m ≤ doτo ≤ m + βj. That is,

qio(x−ij, x̂
i, x̂j, ω)− qio(x−ij, x

i, x̂j, ω)< qio(x−ij, x̂
i, xj, ω)− qio(x−ij, x

i, xj, ω).

Proof of Lemma EC.8. The notation and definitions used in this proof are the same as those

in Lemma 1. The difference between q̂io(0,0) and q̂io(0, βj) under conditions rj < ri ≤ λo and m≤
doτo ≤m+βj is examined. This difference, defined as ∆q̂io(0,∆δ) = q̂io(0, βj)− q̂io(0,0), is calculated
by comparing βj with x

i
o in the following three cases.

Case 1 : βj <x
i
o.

∆q̂io(0,∆δ) = [Im̃+βj≤doτo<m+βj (doτo− m̃−βj)+ Im+βj≤doτox
i
o]

− [Im̃≤doτo<m (doτo− m̃)+ Im≤doτox
i
o]

= doτo− m̃−βj −xio. (EC.15)

Case 2 : βj = xio.

∆q̂io(0,∆δ) = doτo− m̃−βj −xio. (EC.16)

Case 3 : βj >x
i
o.

∆q̂io(0,∆δ) = Im≤doτo<m̃+βj (−x
i
o)+ Im̃+βj≤doτo<m+βj (doτo− m̃−βj −x

i
o). (EC.17)

Next a parametric analysis on γ is performed to investigate the monotony of ∆q̂io(γ,∆δ), where

∆q̂io(γ,∆δ) = q̂io(γ,βj)− q̂io(γ,0). Since xio can be expressed as a monotonically increasing function

e-companion to Author et al.: Responsiveness and Efficiency of Seru Production Systems in Volatile Markets ec23

of γ, Equations (EC.15), (EC.16), and (EC.17) are clearly strictly monotonically decreasing on γ.

This means that ∆q̂io(βi,∆δ)<∆q̂io(0,∆δ) or q̂
i
o(βi, βj)− q̂io(βi,0)< q̂io(0, βj)− q̂io(0,0) or

qio(x−ij, x̂
i, x̂j, ω)− qio(x−ij, x̂

i, xj, ω)< qio(x−ij, x
i, x̂j, ω)− qio(x−ij, x

i, xj, ω). (EC.18)

Equation (EC.18) can also be written as follows.

qio(x−ij, x̂
i, x̂j, ω)− qio(x−ij, x

i, x̂j, ω)< qio(x−ij, x̂
i, xj, ω)− qio(x−ij, x

i, xj, ω). (EC.19)

Because ω is an arbitrary sample path, i and j are arbitrary serus, and i ̸= j, Equations (EC.18)

and (EC.19) show that if rj < ri ≤ λo and m ≤ doτo ≤ m + βj, then qio(x,ω) satisfies strictly

decreasing differences with respect to x1, . . . , xI . □

Lemma EC.9. Suppose that x= (x1, x2, . . . , xI) and y = (y1, y2, . . . , yI) are two initial capacity

levels of a seru system, x ∈ X, y ∈ X. For any sample path ω and order o ∈ O, if x ≥ y, then

xo ≥ yo. x≥ y implies xj ≥ yj for j = 1,2, . . . , I.

Proof of Lemma EC.9. The proof is by induction. For a sample path ω, x1 ≥ y1, by x ≥ y.

Assume that xo ≥ yo, so xo+1 ≥ yo+1 must be proved. That is, xo+1−yo+1 ≥ 0. Let i be an arbitrary

seru. Checking the relation between xio+1 and yio+1, there are three cases.

Case 1. ri = 1.

xio+1− yio+1 = Idoτo≤ao
(
xio− ao

)+
+ Idoτo>ao

(
xio− doτo

)+− Idoτo≤ao
(
yio− ao

)+− Idoτo>ao
(
yio− doτo

)+
= Idoτo≤ao [

(
xio− ao

)+− (yio− ao)+] + Idoτo>ao [(xio− doτo)+− (yio− doτo)+].

By assumption, xo ≥ yo, so that xio+1− yio+1 ≥ 0.

Case 2. 1< ri ≤ λo.

xio+1− yio+1 = Idoτo<m̃(xio− ao)+ + Im̃≤doτo<m
(
xio−max{doτo− m̃, ao}

)+
− Idoτo<m̃′(yio− ao)+− Im̃′≤doτo<m′

(
yio−max{doτo− m̃′, ao}

)+
,

where y[1]o + y[2]o + · · ·+ y[ri−1]
o = m̃′, and y[1]o + y[2]o + · · ·+ y[ri]o =m′. Because m̃≥ m̃′ and m≥m′,

m̃ needs to be compared with m′.

(1) If m′ ≤ m̃, then

xio+1− yio+1 = Idoτo<m̃′
[
(xio− ao)+− (yio− ao)+

]
+ Im̃′≤doτo<m′

[
(xio− ao)+− (yio−max{doτo− m̃′, ao})+

]
+ Im′≤doτo<m̃

(
xio− ao

)+
+ Im̃≤doτo<m(x

i
o−max{doτo− m̃, ao})+.

By assumption, xo ≥ yo, so that xio+1− yio+1 ≥ 0.

ec24 e-companion to Author et al.: Responsiveness and Efficiency of Seru Production Systems in Volatile Markets

(2) If m′ > m̃, then

xio+1− yio+1 = Idoτo<m̃′
[
(xio− ao)+− (yio− ao)+

]
+ Im̃′≤doτo<m̃

[
(xio− ao)+− (yio−max{doτo− m̃′, ao})+

]
+ Im̃≤doτo<m′ [(xio−max{doτo− m̃, ao})+− (yio−max{doτo− m̃′, ao})+]

+ Im′≤doτo<m(x
i
o−max{doτo− m̃, ao})+.

Because doτo− m̃ < doτo− m̃′ and xo ≥ yo, then xio+1− yio+1 ≥ 0.

From (1) and (2), it is concluded that for 1< ri ≤ λo,

xio+1− yio+1 ≥ 0.

Case 3. ri = λo+1.

xio+1− yio+1 = (xio− ao)+− (yio− ao)+ ≥ 0.

From Cases 1, 2, and 3, it is concluded that xio+1− yio+1 ≥ 0. Because i is an arbitrary seru, this

conclusion is true for any seru i∈ I. So xo+1− yo+1 ≥ 0. □

The proof of Lemma EC.3 can be found in Glasserman (1994).

EC.5. Remarks

Remark 3 Consider a context of maximum randomness. A customer order needs a volume of

w product, each product requires N operations. Both a TPS assembly line and a 2-seru system

are balanced, consisting of N workers, each worker has the same processing speed 1/t for each

operation. In the line, each worker is responsible for one operation, whereas in the 2-seru system,

each worker manages two operations within a seru. Under these identical conditions, the 2-seru

system outperforms the line by achieving a shorter cycle time by t units.

Proof of Remark 3. In the context of maximum randomness, processing times are exponentially

distributed with mean t, and all system states are equally likely. For the TPS assembly line with

N workers each responsible for one operation, the expected number of other jobs ahead at each

station is w−1
N

. Therefore, the expected time at each station is t+
(
w−1
N
× t
)
. Multiplying by the

total number of stations N , the cycle time of the line is:

CTline =N

(
t+

w− 1

N
t

)
=Nt+(w− 1)t= t(N +w− 1).

For the 2-seru system, workers are grouped into two serus with each worker managing two

operations, resulting in a processing time of 2t per station. Since jobs are evenly distributed, the

expected number of other jobs ahead at each seru station is (w/2)−1

N/2
= w−2

N
. Thus, the expected

time at each seru station is 2t+
(
w−2
N
× 2t

)
. Multiplying by the number of stations per seru N/2,

the cycle time of the 2-seru system is:

CTseru =
N

2

(
2t+

w− 2

N
× 2t

)
=Nt+(w− 2)t= t(N +w− 2).

e-companion to Author et al.: Responsiveness and Efficiency of Seru Production Systems in Volatile Markets ec25

Subtracting the two cycle times yields the gap:

CTline−CTseru = t(N +w− 1)− t(N +w− 2) = t,

which shows that under identical conditions, the 2-seru system achieves a shorter cycle time by t

units compared to the TPS assembly line.

References

Bertsekas D, Tsistiklis J (1996) Neuro-Dynamic Programming (Belmont, MA: Athena Scientific).

Bottou L, Curtis FE, Nocedal J (2018) Optimization methods for large-scale machine learning. SIAM Review

60(2):223–311.

Edwards C (1973) Advanced Calculus of Several Variables (New York: Dover).

Fang C, Lin Z, Zhang T (2019) Sharp analysis for nonconvex sgd escaping from saddle points. Conference

on Learning Theory, 1192–1234, Proceedings of Machine Learning Research.

Feige U (1998) A threshold of lnn for approximating set cover. Journal of the ACM 45(4):634–652.

Fotopoulos GB, Popovich P, Papadopoulos NH (2024) Review non-convex optimization method for machine

learning arXiv:2410.02017.

Garey M, Johnson D (1979) Computers and Intractability: A Guide to the Theory of NP-Completeness (New

York: W.H. Freeman).

Glasserman P (1994) Perturbation analysis of production networks. Yao DD, ed., Stochastic Modeling and

Analysis of Manufacturing Systems, 233–280 (New York: Springer).

Golrezaei N, Nazerzadeh H, Rusmevichientong P (2014) Real-time optimization of personalized assortments.

Management Science 60(6):1532–1551.

Kapralov M, Post I, Vondrák J (2013) Online submodular welfare maximization: Greedy is optimal. Proceed-

ings of the Twenty-fourth Annual ACM-SIAM Symposium on Discrete Algorithms, 1216–1225 (Society

for Industrial and Applied Mathematics).

Katende R, Kasumba H (2024) Efficient saddle point evasion and local minima escape in high-dimensional

non-convex optimization arXiv:2409.12604.

Lay S (1982) Convex Sets and Their Applications (New York: John Wiley & Sons).

Li H, Lin Z (2023) Restarted nonconvex accelerated gradient descent: No more polylogarithmic factor in

the O(ϵ−7/4) complexity. Journal of Machine Learning Research 24(157):1–37.

Ma W, Simchi-Levi D (2020) Algorithms for online matching, assortment, and pricing with tight weight-

dependent competitive ratios. Operations Research 68(6):1787–1803.

Mahajan S, Van Ryzin G (2001) Stocking retail assortments under dynamic consumer substitution. Opera-

tions Research 49(3):334–351.

Mehta A (2013) Online matching and ad allocation. Foundations and Trends in Theoretical Computer

Science 8(4):265–368.

Newton D, Yousefian F, Pasupathy R (2018) Stochastic gradient descent: Recent trends. Gel E, Ntaimo L,

eds., Recent Advances in Optimization and Modeling of Contemporary Problems, chapter 9, 193–220.

ec26 e-companion to Author et al.: Responsiveness and Efficiency of Seru Production Systems in Volatile Markets

Olofsson P, Andersson M (2012) Probability, Statistics, and Stochastic Processes (New Jersey: John Wiley

& Sons).

	【DBS_25_02】Discussion paper cover page_English
	Final.pdf
	空白ページ

